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Abstract 

Texture evolution in metals due to rotation of the atomic lattice results in a complex macroscopic mechanical behaviour which cannot in 

general be reasonably captured by only classical isotropic or kinematic hardening. Focusing on standard rate-independent plasticity, the 

evolution of microstructure leads to an evolving macroscopic anisotropy of the yield surface, also known as distortional or differential 

hardening. This effect is very important, particularly if non-radial loading paths such as those associated with forming processes are to be 

numerically analyzed. 

In the present work, different existing distortional hardening models are critically reviewed. They are reformulated into the modern 

framework of hyperelastoplasticity and the same objective time derivative is applied to all evolution equations for a better comparison. 

Furthermore, since the original models are based on a yield function not accounting for the different mechanical responses between tensi-

on and compression as observed in metals showing a close-packed atomic structure, respective generalizations are also discussed. 

It is shown that only one of the extended models can fulfill the second law of thermodynamics. That model predicts a high curvature of the 

yield surface in the loading direction, while the opposite region of the yield surface is rather flat. Such a response can indeed be ob-

served for some materials. In the case of magnesium alloys, however, that does not seem to be true. Therefore, a new constitutive model 

is presented. Its underlying structure is surprisingly simple and the model is not only thermodynamically consistent but also variationally 

consistent. Conceptually, distortional hardening is described by an Armstrong-Frederick-type evolution equation. The calibrated new model 

is implemented in a finite element framework and its predictive capabilities are demonstrated.

Makroskopische Modellierung der formativen Verfestigung in Polykristallen: Anwendung auf 
Magnesiumlegierungen

Zusammenfassung

Texturentwicklung in Metallen aufgrund der Rotation des atomaren Gitters führt zu einem komplexem mechanischen Verhalten, welches 

nicht hinreichend durch klassische Plastizitätsmodelle mit isotroper und/oder kinematischer Verfestigung  beschrieben werden kann. Im 

Rahmen der ratenunabhängigen Plastizität führt die entwicklung der Mikrostruktur zu einer Anisotropie der Fließfläche, auch bekannt unter 

dem Namen distortional hardening (Formänderungsverfestigung). Die Berücksichtigung dieses effekts ist insbesondere bei nicht-radialen 

Lastpfaden bedeutend, welche z.B. bei Umformprozessen auftreten.

In der vorliegenden Arbeit werden zunächst verschiedene existierende Plastizitätsmodelle mit Formänderungsverfestigung untersucht. 

Diese Modelle werden in einen einheitlichen hyperelastisch-plastischen Rahmen überführt. Zum Beispiel wird für eine bessere Vergleich-

barkeit die selbe Zeitableitung für alle evolutionsgleichungen verwendet. Da die bereits existierenden Modelle keine Zug-Druck-Asymmetrie 

berücksichtigen, welche aber in Magnesium-Legierungen zu beobachten ist, werden auch erweiterungen der zugrunde liegenden Fließfunk-

tionen diskutiert. es wird gezeigt, dass nur eines der erweiterten Modelle den Zweiten Hauptsatz der Thermodynamik erfüllt. Charakteristi-

sches Merkmal dieses Modells ist eine starke Krümmung der Fließfläche in Belastungsrichtung. Solches Verhalten kann bei verschiedenen 

Materialien beobachtet werden; allerdings trifft dies nicht für Magnesium zu. Aus diesem Grund wird ein neues Materialmodell vorgestellt. 

Die resultierende physikalische Beschreibung ist nicht nur thermodynamisch sondern auch variationell konsistent. Die Formänderungs-

verfestigung wird auf der Grundlage einer entwicklungsgleichung vom Armstrong-Frederick-Typ berücksichtigt. Das Materialmodell 

wird im Rahmen der Finite-elemente-Methode implementiert, und die Materialparameter werden an experimente mit einer Magnesium-

Legierung angepasst.
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1. Introduction

Although much effort has already been spent to understand the macroscopic
mechanical response of metallic polycrystals, this topic remains one of the most
active research areas in constitutive modeling. Probably most difficult problem
associated with a macroscopic description of deformation in polycrystals is to
capture the evolution of the microstructure. This complex evolution at the
microscale, in turn, leads to a complex mechanical response at the macroscale,
cf. Miehe et al. (2002); Roters et al. (2010). Focusing on phenomenological
rate-independent plasticity models, the evolution of the microstructure yields
an evolving anisotropy of the material. This manifests in the so-called cross
hardening effect under orthogonal loading-path changes, see Hiwatashi et al.
(1998); Wang et al. (2006). Accordingly, whenever strain path changes occur,
which is the case in almost every technologically relevant process such as deep-
drawing, the distortion of the macroscopic yield function has to be accounted
for and thus, classical macroscopic isotropic or kinematic hardening models
are not sufficient anymore, cf. Noman et al. (2010); Boers et al. (2010).

Since the macroscopic mechanical response of metallic polycrystals is a di-
rect consequence of the underlying microstructure, a multiscale description
seems to be promising. Several researchers have proposed such a modeling ap-
proach in which crystal plasticity theory is usually employed at the microscale,
cf. Miehe et al. (2002); Roters et al. (2010); Homayonifar & Mosler (2012).
By considering a representative volume element (RVE), the transition to the
macroscale is realized by a homogenization method, see Miehe et al. (2002). Al-
though such methods are indeed promising, they result in high computational
complexity. This is even true, if some approximations such as those known
from the mean-field-theory-based self-consistent approaches Lebensohn et al.
(2004) or the Taylor model Miehe & Rosato (2007) are made.

A direct phenomenological description provides an alternative to the afore-
mentioned multiscale approaches. Such a description is computationally more
efficient and thus, it can be directly applied to the analysis of large-scale en-
gineering problems. However, the improved numerical efficiency comes along
without considering the evolution of the underlying microstructure. For in-
stance, the plastic deformation within a certain grain cannot be predicted by
a purely macroscopic model. Clearly, this is not surprising, since the macro-
scopic approach can be interpreted as a projection (homogenization) of some
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2 Chapter 1. Introduction

microscopic model. Since the final goal pursued by the author is the modeling
of forming processes of magnesium sheets, a direct macroscopic phenomenolog-
ical description is considered here. The framework of rate-independent finite
strain plasticity is adopted.

A macroscopic phenomenological description of magnesium has to capture
the most relevant mechanical behaviour encompassing the strength differential
effect (different yield stress in tension and compression; abbreviated as SD-
effect in the following), the material’s initial anisotropy resulting from the
underlying atomic lattice (HCP in case of magnesium), and its texture as well
as the evolving material’s anisotropy due to evolution of the microstructure,
cf. Christian & Mahajan (1995). Concerning the SD-effect, Drucker-type yield
surfaces (cf. Drucker (1949)) can be employed, see also Cazacu & Barlat (2001,
2004). In contrast to the classical von Mises yield function, they also include
the third invariant of the deviatoric stress tensor. Such yield function can
be extended for anisotropic materials, e.g. by introducing structural tensors,
cf. Johansson et al. (2005); Vladimirov et al. (2010), or by applying a linear
transformation to the stress tensor, see Cazacu & Barlat (2004); Barlat et al.
(2005, 2007). In summary, the SD-effect as well as the initial anisotropy can
be captured in a relatively straightforward manner by existing models.

In contrast to the SD-effect and the initial anisotropy, modeling the effect of
the microstructure evolution from a macroscopic point of view is comparably
difficult. Only a few approaches have been published in this connection, see
e.g. Hiwatashi et al. (1998); Haddadi et al. (2006); Feigenbaum & Dafalias
(2007, 2008); Boers et al. (2010); Noman et al. (2010); Pietryga et al. (2012).
Concerning the effect of microstructural evolution, two significantly different
evolution mechanisms have to be distinguished: grain refinement and coarsen-
ing on the one hand and dislocation structures on the other hand. As discussed
in Wang et al. (2008), the latter is the major driving source in sheet forming
processes. Since the modeling of such processes for magnesium is the over-
riding goal of the present work, focus is placed on plasticity modeling of the
macroscopic mechanical response with distortional hardening.

In order to get an insight into the origin of the topic, Chapter 2 is devoted
to a brief introduction on the mechanical behaviour of the commercial Mg al-
loy AZ31. The fundamentals of continuum mechanics are given in Chapter 3.
Based on this, three existing constitutive models are discussed, and extended
for the modeling of magnesium in Chapter 4. The first model was published in
a series of papers by Teodosiu and co-workers, cf. Hiwatashi et al. (1998); Li
et al. (2003); Haddadi et al. (2006), and is referred to as the Teodosiu model.
The second one was advocated by Levkovitch & Svendsen, cf. Barthel et al.
(2008); Noman et al. (2010), and is referred to as the Levkovitch & Svendsen
model. The third one was proposed in Feigenbaum & Dafalias (2007, 2008);
Plesek et al. (2010), and is referred to as the Feigenbaum & Dafalias model.
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Thermodynamical consistency of the extended models is critically analyzed.
The model parameters are identified in Chapter 5. As the only thermodynam-
ically consistent extended model cannot fully capture the mechanical response
of Mg alloys, a new constitutive model is developed in Chapter 6. It is found
that the new model is thermodynamically and variationally consistent, inde-
pendent of loading path changes and material parameters. The latter property
means that the state variables predicted by the model can be interpreted as
stable energy minimization. The applicability of the novel model is finally
demonstrated in Chapter 7.





2. Mechanical behaviour of magnesium alloys

Magnesium alloys are the lightest metallic structural materials and are there-
fore very attractive for applications in the automobile, railway and aerospace
industries where mass reduction is an important issue. However, owing to
their HCP structure and a limited number of slip systems, Mg alloys exhibit
only limited ductility. This limits the range of possible engineering applica-
tions of Mg alloys, cf. Roberts (1960); Kelley & Hosford (1968a); Yoo (1981);
Avedesian & Baker (1999). Furthermore, magnesium and its alloys show a pro-
nounced strength differential effect as well as strong deformation anisotropy
cf. Agnew & Duygulu (2005). The aforementioned mechanical behaviour of
magnesium alloys is analyzed in the present chapter.

2.1. Initial plastic anisotropy and strength differential effect

Strongly textured polycrystalline magnesium alloys show differences under ten-
sion and compression, i.e., an asymmetry in tension and compression of yield
behaviour, also known as strength differential effect (SD effect), see Fig. 2.1.
Up to 40 years ago, it was believed that the SD effect of Mg alloys was due to
the {1 0 1̄ 2} twinning that occurs in compression, cf. Hill (1973). Recently, ac-
cording to Lou et al. (2007); Christian & Mahajan (1995); Wang et al. (2009),
the SD effect was shown to originate from the differences in the active modes
of deformation twinning. The activation of deformation twinning relies on the
availability of a critical dislocation density level in the sample produced by ini-
tial dislocation generation and motion. In order to model the SD effect as well
as the initial anisotropic yield surface at the macroscale, the so called CB2004
yield function represents a suitable choice, cf. Cazacu & Barlat (2004). In this
model, the SD effect is captured by the introduction of the third invariant of
deviatoric stress tensor.

2.2. Evolving anisotropy: distortional hardening

After first yielding, an evolution of the anisotropic mechanical behaviour of
Mg alloys is observed, see Fig. 2.1 and Fig. 2.2 (right figure). That can be seen
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6 Chapter 2. Mechanical behaviour of magnesium alloys
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Fig. 6. Uniaxial hardening in tension and compression in three directions: (a) 3.2 mm thick material, (b) 6.4 mm
thick material.

Table 3
In-plane yield and strain anisotropy of AZ31B Mg alloy

RD 45� TD rTD/rRD or rTD/rRD

rtension
yield ð0:2% offsetÞ 164 MPa 180 MPa 192 MPa 1.17

rcompression
yield ð0:2% offsetÞ 104 MPa 105 MPa 110 MPa 1.06

rtension
yield ð0:4% offsetÞ 167 MPa 182 MPa 191 MPa 1.14

rcompression
yield ð0:4% offsetÞ 106 MPa 107 MPa 112 MPa 1.06

rcumulative
tension ð0 � 0:074Þ 1.7 2.6 4.3 2.5

rcumulative
compression ð0 � �0:074Þ 0.2 0.25 0.4 2.0

56 X.Y. Lou et al. / International Journal of Plasticity 23 (2007) 44–86

with U1 to U3 given by (12), W1 to W3 given by (13) and the superscripts T and C
designating tensile and compressive states, respectively.

In the following, the proposed anisotropic criterion will be applied to the descrip-
tion of the anisotropy and asymmetry of the yield loci of textured polycrystalline
magnesium and binary Mg–Th and Mg–Li alloys (data reported in Kelley and Hos-
ford, 1968) and a (hcp) titanium (data after Lee and Backofen, 1966).

4. Applications to magnesium alloys

Kelley and Hosford (1968) reported the results of an experimental investigation
into the anisotropy and asymmetry in yielding of textured polycrystalline binary
Mg–Th (0.5% Th) and Mg–Li (4% Li) alloys. The data consists of the results of uni-
axial compression tests in the rolling, transverse, and normal directions, respectively,
uniaxial tensile tests in the rolling and transverse directions, as well as plane strain
compression tests. Based on these data, the experimental yield loci corresponding
to several constant levels (1%, 5%, and 10%) of the largest principal strain were re-
ported (see Figs. 9 and 10 where experimental data are represented by symbols). Due
to the strong basal pole alignment in the thickness direction, f10�12g twinning is eas-
ily activated by compression perpendicular to this direction, but is not active in ten-
sion within the plane. The effect of f10�12g twinning is clearly evident in the low
compressive strengths at 1%. At 10% strain, the third quadrant strengths are compa-
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Fig. 9. Comparison between the plane stress yield loci (rxy = 0) for a Mg–0.5% Th sheet predicted by the
proposed theory (solid lines) and experiments (symbols). Data after Kelley and Hosford (1968). Stresses in
MPa.

1184 O. Cazacu et al. / International Journal of Plasticity 22 (2006) 1171–1194

SD effect

SD effect

Figure 2.1.: Plastic anisotropy and SD effect of magnesium alloys, left: uniax-
ial hardening in tension and compression in three directions of 3.2
mm thick AZ31B sheet, cf. Lou et al. (2007); right: comparison
between yield loci for a Mg-Th sheet predicted by Cazacu and Bar-
lat model (solid lines, cf. Cazacu et al. (2006)) and experiments
(symbols, cf. Kelley & Hosford (1968b))

by the equivalent plastic work contour (or equivalent plastic strain contour),
cf. Banabic et al. (2004); Kuwabara et al. (2005); Graff et al. (2007); Steglich
et al. (2011); or by the evolution of the yield surface according to continuum
plasticity theory, cf. Feigenbaum & Dafalias (2007); Feigenbaum (2008). For
isotropic materials under radial loading (loading in which the biaxial stress
ratio is maintained constant, cf. Marin & Sauer (1953)), the equivalent plastic
contour plot and the evolution of the yield function are almost equivalent.
However, that is not the case for non-radial loading cf. Marin & Sauer (1953);
Rees (1987).

Although there are differences between the plastic work/strain contour and
the yield surfaces, the evolving anisotropy of sheets made of Mg alloys can
be shown by both of the aforementioned plots. Commonly it is described
by means of the plastic work contour, cf. Kelley & Hosford (1968b); Graff
et al. (2007); Steglich et al. (2011). By way of contrast, experimental data
for the yield surfaces of metals are limited compared to equivalent plastic
work contours, e.g., cf. Bui (1966); Phillips & Juh-Ling (1972); Hecker (1973);
D.E. Helling (1986); Xu (1994); M. Boucher (1995); Kurtyka & Zyczkowski
(1996); Han-Chin & Wu (2003), for Al alloys. Since the macroscopic modeling
of magnesium based on plasticity theory is the focus of the present thesis, the
concept of a yield surface represents the more natural choice.
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Fig. 5. Comparison of experimental data points (sYx, sYy) with
existing yield loci: (a) Hill’s quadratic, Logan and Hosford’s and
Mises’ yield loci; (b) Gotoh’s biquadratic yield loci; and (c) Hill’s ’90
yield loci. Each symbol corresponds to a contour of plastic work for
a particular value of o0

p.

Fig. 6. Comparison of measured directions of incremental plastic
strain vectors (�) with those of the local outward normals to each
yield criterion.

transverse direction. This seems to exemplify the phe-
nomenon of differential work hardening [10,11].

(2) The general trends of the differential work hard-
ening behavior of the present material were well de-
scribed by Gotoh’s biquadratic yield criterion, which
also enabled the prediction of the in-plane r-value
distribution with good accuracy.

Fig. 7. Comparison of in-plane r-value distribution between measured
values (�) and those predicted by Hill’s quadratic yield criterion,
Gotoh’s biquadratic yield criterion at o0

p=0.02 and Hill’s ’90 yield
criterion at o0

p=0.02.

through to uniaxial tension in the rolling direction of
the specimen, while there was little expansion in the

              

parameters. The reference curve, right hand side of Eq. 11,
is assumed to be the same in both cases. The parameters
used in the simulations are summarised in Table 1.

It has to be mentioned here that three more coefficients,
a4, b5, b10, are physically relevant in plane stress and hence
influence the result for arbitrary mechanical loading
situations. As already pointed out they cannot be deter-
mined from the suggested tests and therefore have to be
preset to “reasonable” values.

Figure 6 shows the optimisation result if only one
contour is considered: "p ¼ 0:02, "p ¼ 0:08; or "p ¼ 0:14
leading to set#1, set#2 or set#3, respectively (see Table 1).
Obviously each of the contours is met very well. Their
respective shapes differ significantly from the one of the
von Mises ellipse (included in the figure for comparison).
In any 3D-simulation, one of these sets of parameters can
be used together with an isotropic hardening function in
principle. However, it is then not possible to account for the
change of the contours shape.

In Fig. 7 the effect of the different parameter sets on the
R-value

R ¼ "plw

"plt
ð22Þ

obtained from tensile tests conducted in different directions
8 ∈ [0°, 90°] from rolling direction (8=0°) is depicted. "plw
and "plt refer to the plastic strains in the width and thickness
directions of the tensile specimen. The respective R-values
can either be calculated from the plastic potential using the
normality rule or extracted from finite element simulations
directly by monitoring the strains and using Eq. 22. The
latter procedure was used here.

Typically for rolledmagnesium alloys the R-value is higher
than one. This is due to the strong basal texture and the limited
amount of slip systems acting in the thickness direction. The
variation of the R-value with respect to the loading direction
for each stress level is large, in particular for the first stress
level which corresponds to the onset of yielding. While
hardening takes place, the overall level of R-value decreases
and its variation decreases as well. This appears to be
physically sound, because at high strains the initial (basal)

3D Plane stress Set#1 (0.02) Set#2 (0.08) Set#3 (0.14) Set#4 (A(a,b), B(a,b), C(a,b))i

a1 a1 0.0558 2.0389 2.8938 0.9476, 1.9429, 1.9300

a2 a2 3.3594 2.7276 2.9709 1.2250, 1.3538, 0.5979

a3 a3 3.2525 3.2151 3.5400 1.2885, 1.5705, 1.9199

a4 a4 (
a) 4 4 4 4, 0, 0

a5 – 1 1 1 1, 0, 0

a6 – 1 1 1 1, 0, 0

b1 b1 −2.413 −1.0642 2.7874 0.0476, 2.5859, 0.1498

b2 b2 9.0126 7.3961 0.8993 2.3522, 0.2891, 0.7923

b3 b3 8.6030 1.4114 −0.4659 1.2332, 0.4304, 2.5065

b4 b4 −2.4071 −0.3435 −0.1422 0.0511, 3.5625, 1.8850

b5 b5 (
a) 1.5 1.5 1.5 1.5, 0, 0

b6 – 1 1 1 1, 0, 0

b7 – 1 1 1 1, 0, 0

b8 – 1 1 1 1, 0, 0

b9 – 1 1 1 1, 0, 0

b10 b10 (
a) 3 3 3 3, 0, 0

b11 – 1 1 1 1, 0, 0

Table 1 Model parameters used
in the FE-simulations; (a) indi-
cates values which remain un-
determined by the optimisation
procedure
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Figure 2.2.: Equivalent plastic work contour, left: comparison of experimental
data with Hill’s ’90 yield loci for cold-rolled low-carbon steel sheet,
cf. Kuwabara et al. (1998); right: fit of contours of constant plastic
work by means of crystal plasticity model for magnesium alloy
(ZM21) sheet, cf. Steglich et al. (2011)

2.3. Loading path dependent distortional hardening

For non-radial loading or loading path changes, the distortional hardening of
a metal is better demonstrated by the yield surface compared to an equivalent
plastic work contour, see Fig. 2.3. This is due to the fact, that a yield surface
corresponds to one state (the internal variables are constant for a certain yield
surface). By way of contrast, different (loading) states are combined within
an iso-contour plot of the equivalent plastic work. Concerning the anisotropic
mechanical behaviour of Mg alloys with loading path changes, an investigation
on the hardening behaviour of AZ31B sheet has been carried out, cf. Lou et al.
(2007); Proust et al. (2009); Lee et al. (2008, 2009). However, the related
constitutive models in Li et al. (2010) are not thermodynamically consistent,
i.e., they do not fulfill the second law of thermodynamics.
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Figure 2.3.: Evolution of yield surfaces under orthogonal loading path change
for Al, model by Feigenbaum & Dafalias (solid lines, cf. Feigen-
baum & Dafalias (2007); Plesek et al. (2010)); experiments (sym-
bols, cf. M. Boucher (1995))



3. Finite strain plasticity theory in a nutshell

The present chapter is concerned with the fundamentals of finite strain plas-
ticity theory. Most parts of this chapter have been taken from Shi & Mosler
(2012).

3.1. Fundamentals

Following standard notations in continuum mechanics, material points P are
identified by their position vectors. While such vectors are denoted as X
within the undeformed configuration Ω, the lowercase letter x signals the
spatial counterpart in the deformed configuration ϕ(Ω). With these vectors,
the deformation mapping ϕ is introduced in standard manner, i.e., ϕ : Ω 3
X → x ∈ ϕ(Ω). It is locally approximated by the deformation gradient
F := GRADϕ = ∂ϕ/∂X.

Since elastoplastic deformation processes are considered within the present
work, it is convenient to decompose F into an elastic part F e and a plas-
tic part F p. More explicitly and in line with Lee (1969), the multiplicative
decomposition

F = F e · F p, with detF e > 0, detF p > 0 (3.1)

is adopted for that purpose, cf. Fig. 3.1. Since constitutive models suitable
for analyzing plastic deformation are usually based on evolution equations for
the inelastic strains F p, deformation rates are also required. Analogously to
the standard spatial velocity gradient

l := Ḟ · F−1 (3.2)

the two additional velocity gradients

Lp := Ḟ
p · [F p]−1, le := Ḟ

e · [F e]−1 (3.3)

are thus defined. Here, the superposed dot represents the material time deriva-
tive.

9
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F

ϕ
Ω

∂Ω
dX

dx
ϕ(Ω)

F p
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reference configuration current configuration

intermediate configuration

O

e1

e2

e3

Ωp

dp ∂Ωp

X1, x1

X2, x2

X3, x3

Figure 3.1.: Reference, intermediate and current configuration of a material
body. It bears emphasize that the intermediate configuration is
fictitious, i.e., the decomposition of F is local in nature.

Similarly to the kinematics (3.1), the constitutive response is also decomposed
into an elastic part Ψe and a plastic part Ψp. To be more precise, the Helmholtz
energy Ψ is additively split according to

Ψ = Ψe(F e) + Ψp(α). (3.4)

Here, the energy Ψe is due to elastic distortion of the underlying atomic lattice,
whereas Ψp depending on the suitable set of internal strain-like variables α is
related to plastic hardening. Ψp will cover classical isotropic and kinematic
hardening as well as distortional hardening (distortion of the yield function).
Application of the meanwhile standard Coleman & Noll procedure (see Cole-
man & Gurtin (1967)) yields the stress response

P = ∂FΨ (3.5)

together with the reduced dissipation inequality

D = Σ : Lp +Q · α̇ ≥ 0, Q := −∂αΨ. (3.6)

Here, P is the first Piola-Kirchhoff stress tensor, Σ = 2 Ce ·∂CeΨ is the Man-
del stress tensor (with respect to the intermediate configuration) and Q is the
stress-like internal variable energetically conjugate to α. In addition to the nu-
merical advantages of hyperelastoplastic formulations such as the one defined
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by Eq. (3.4) (see Simo & Hughes (1998); Simo (1998)), the introduction of a
stored energy is also required for proving thermodynamical consistency (e.g.
the second law of thermodynamics). An equally important fact is that models
not consistently derived from an energy potential such as hypoelastoplasticity
approaches do usually not obey the second law of thermodynamics for elastic
unloading, cf. Xiao et al. (2000); Bruhns et al. (1999). In summary, the choice
of a framework for finite strain plasticity theory is not always only a matter
of taste.

While for elastic unloading (Lp = 0 and α̇ = 0), the dissipation inequal-
ity (3.6) is evidently fulfilled, that is not automatically the case for elastoplas-
tic processes. A thermodynamically consistent framework a priori guarantee-
ing Ineq. (3.6) is that of generalized standard materials, cf. Mandel (1971);
Lemaitre (1985). This framework requires an additional response function:
the so-called plastic potential Ω. With this potential Ω, the flow rule and the
hardening rules are assumed to be

Lp = λ ∂ΣΩ α̇ = λ ∂QΩ. (3.7)

In Eq. (3.7), λ ≥ 0 is the non-negative plastic multiplier. It can be seen in a
straightforward manner that Ineq. (3.6) is always fulfilled, provided the plastic
potential is convex (and non-negative for plastic loading).

To complete the model, the plastic multiplier λ ≥ 0 has to be determined for
elastoplastic loading. Usually, the space of admissible stresses EΣ is introduced
for this reason. In line with the reduced dissipation inequality (3.6), this space
is formulated in terms of Σ and Q, i.e.,

EΣ =
{

(Σ,Q) ∈ R9+n
∣∣ φ (Σ,Q) ≤ 0

}
. (3.8)

Here, φ is the yield function which has to fulfill certain regularity conditions
such as convexity. With the help of space (3.8), the loading and unloading
conditions can be written in the classical Karush-Kuhn-Tucker form

λ φ = 0, λ φ̇ = 0. (3.9)

and the plastic multiplier λ is computed from the consistency condition φ̇ =
0. The constitutive equations defining the finite strain plasticity models are
summarized in Tab. 3.1.

Remark 1 According to Eqs. (3.8) and (3.7), a description with respect to
the intermediate configuration is chosen. Such a description is well known to
automatically fulfill the principle of material frame indifference. Hence, arbi-
trary material symmetries can be modeled in a straightforward manner. That
is certainly of utmost importance in the case of texture evolution. Although fre-
quently seen in the literature, anisotropic yield functions in terms of Cauchy
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stresses do not automatically fulfill the principle of material frame indifference
(except if evolving structural tensors are also introduced, cf. Xiao et al. (2000);
Bruhns et al. (1999)).

3.2. A prototype model for magnesium

A yield function suitable for the modeling of magnesium alloys (polycrys-
tals) has to capture the strength differential effect, the material’s symmetry
(anisotropy) and, in line with the underlying atomic lattice structure of the
material, it should only depend on the stress deviator. Such a function was
presented in a series of papers by Barlat and co-workers, cf. Cazacu & Barlat
(2004). In line with Mekonen et al. (2012), this model is rewritten in tensor no-
tation here and re-formulated in terms of Mandel stress automatically fulfilling
the principle of material frame indifference. Considering isotropic hardening
(the related stress-like internal variable is denoted as Qiso) and in contrast
to Cazacu & Barlat (2004); Mekonen et al. (2012) also kinematic hardening
(the related stress-like internal variable is denoted as Qkin), the yield function
reads

φ = J
3
2
2 − J3 −Q3

0 −Q3
iso. (3.10)

Here, Q0 is the yield stress associated with the initial yield surface and J2 and
J3 are modified second and third invariants of the effective stresses Σ−Qkin.
They are defined as

J2 :=
1

2
tr [ξ1 · ξ1] , J3 :=

1

3
tr [ξ2 · ξ2 · ξ2] , tr(•) := (•) : 1 (3.11)

with the linear transformations

ξi := Hi : (Σ−Qkin), i ∈ {1; 2}. (3.12)

According to Eq. (3.12), the material’s anisotropy is captured by the fourth-
order tensors Hi. Consequently, a distortion of the yield surface can be cap-
tured by suitable evolution equations of the type Ḣi = F(λ). Speaking from
a physics point of view, such equations are related to the evolution of the
underlying microstructure. In the present work, this effect is however not yet
considered.

The model is completed by defining evolution equations and the Helmholtz
energy. Concerning the latter, the isotropic neo-Hooke-type energy

Ψe(Ce) =
Λ

4

(
Je2 − 1

)
−
(

Λ

2
+ µ

)
ln Je +

µ

2
(trCe − 3) (3.13)
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• Multiplicative decomposition of the deformation gradient F

F = F e · F p, with detF e > 0, detF p > 0.

Here, F e is associated with elastic and F p with plastic deformations,
cf. Lee (1969).

• Additive decomposition of the Helmholtz energy Ψ

Ψ = Ψe(Ce) + Ψp(α), Ce := F eT · F e.

Ψe defines the mechanical response to fully reversible deformations,
while Ψp is related to plastic work. α denotes strain-like internal
variables governing isotropic, kinematic and distortional hardening.
Ce is elastic right Cauchy-Green tensor.

• Definition of the space of admissible stresses EΣ

EΣ =
{

(Σ,Q) ∈ R9+n
∣∣ φ (Σ,Q) ≤ 0

}
.

Here, φ is the yield function, Σ is the Mandel stress, Q are the
stress like internal variables work conjugate to α governing isotropic,
kinematic and distortional hardening.

• Non-associative flow rule and hardening law

Lp = λ ∂ΣΩ, α̇ = λ ∂QΩ.

Here, Ω is the plastic potential, Lp := Ḟ
p · [F p]−1 is the plastic

velocity gradient and λ is the plastic multiplier.

• Karush-Kuhn-Tucker conditions

λ φ = 0, λ φ̇ = 0.

• Reduced dissipation inequality

D = Σ : Lp +Q · α̇ ≥ 0, Q := −∂αΨ.

Table 3.1.: Summary of the constitutive equations defining the finite strain
plasticity framework used within the present thesis, cf. Lemaitre
& Chaboche (1990); Simo & Hughes (1998); Holzapfel (2000)
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is adopted, since the elastic response of magnesium is not strongly anisotropic.
In Eq. (3.13), Λ and µ represent the Lamé parameters and Je := detF e,
cf. Ogden (1997). Regarding the part Ψp of the Helmholtz energy due to
cold work, a decoupling of isotropic and kinematic hardening resulting in the
additive split

Ψp(αiso,αkin) = Ψp
iso(αiso) + Ψp

kin(αkin) (3.14)

is assumed. Here, αiso and αkin are strain-like internal variables conjugate to
Qiso := −∂αisoΨ and Qkin := −∂αkinΨ, respectively. Furthermore and with
focus on non-linear kinematic hardening of Armstrong-Frederick-type, Ψp

kin is
specified to

Ψp
kin(αkin) =

1

2
ckin αkin : αkin (3.15)

where ckin is the kinematic hardening modulus. Finally, the plastic potential

Ω = φ+
1

2

bkin

ckin
Qkin : Qkin (3.16)

defining the flow rule and the evolution equations is adopted, see Eq. (3.7).
The model parameter bkin defines the saturation value of the back strain αkin.
According to Eq. (3.16), an associative flow rule and an associative evolution
equation for isotropic hardening are chosen, whereas kinematic hardening is
governed by the differential equation

α̇kin = λ ∂Qkin
Ω = −λ ∂Σφ− λ bkin αkin. (3.17)

Neglecting kinematic hardening, model parameters calibrated for the magne-
sium alloys AZ31 and ZE10 can be found in Mekonen et al. (2012).

Remark 2 Since usually ||∂Σφ|| 6= 1, the flow direction ∂Σφ in Eq. (3.17) is
often replaced by its normalized counterpart N := ∂Σφ/||∂Σφ||. Combining
this with Qkin = −ckin αkin yields

Q̇kin = ckin

(
N − bkin

ckin
Qkin

)
λ. (3.18)

This representation of kinematic hardening will frequently be used in the present
work.



4. Models suitable for the analysis of
magnesium alloys

The present chapter is concerned with a critical review of existing distortional
hardening models. To be more precise, the Teodosiu model (see Hiwatashi
et al. (1998); Haddadi et al. (2006)), the Levkovitch & Svendsen model (see
Barthel et al. (2008); Noman et al. (2010)) and the Feigenbaum & Dafalias
model (see Feigenbaum & Dafalias (2007, 2008)) are analyzed and compared.
For a better comparison, they are reformulated into the modern framework
of hyperelastoplasticity and the same consistent notation is used for the de-
scription of every model. In addition to the review, the extensions necessary
for the modeling of texture evolution in magnesium alloys are also discussed.
Finally, the fulfillment of fundamental principles of material modeling such as
thermodynamical consistency is checked for the resulting novel models.

Most parts of this chapter have been taken from Shi & Mosler (2012).

4.1. The Teodosiu model and its extensions

4.1.1. Fundamentals

The fundamentals of the Teodosiu model are briefly given here. However and
in contrast to the original works Hiwatashi et al. (1998); Peeters et al. (2002);
Li et al. (2003); Haddadi et al. (2006), the notations as introduced within the
previous chapter are used here.

The Teodosiu model is based on the modified Hill-type yield function

φ = Σ̄e −Q0 −Qiso − f‖S‖ (4.1)

with the equivalent relative stress

Σ̄e =
√

(devΣ−Qkin) : H : (devΣ−Qkin). (4.2)

where devΣ is the deviator of Σ, f is a model parameter and H and S are
two fourth-order tensors. It bears emphasis that, in contrast to the original
model, Mandel stresses are considered here. The principle of material frame

15
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indifference is thereby fulfilled. The fourth-order tensor H in Eq. (4.2) defines
the symmetry of the material which is kept constant in the original Teodosiu
model (Ḣ = 0). The only non-standard term in the yield function (4.1) is the
fourth-order tensor S. As will be shown, this tensor captures, among others,
the cross hardening effect (see Haddadi et al. (2006)).

Isotropic and kinematic hardening are governed by the classical Armstrong-
Frederick evolution equations (compare to Eq. (3.18))

Q̇iso = ciso (Q∞iso −Qiso) λ (4.3)

and

Q̇kin = ckin (Q∞kin N −Qkin) λ, N :=
∂Σφ

‖∂Σφ‖
. (4.4)

In line with the notation introduced in the previous chapter, ciso and ckin are
the isotropic and the kinematic hardening moduli and Q∞iso and Q∞kin are the
saturation limits associated with isotropic and kinematic hardening. The only,
but nevertheless crucial, difference compared to standard non-linear kinematic
hardening is that the saturation limit Q∞kin is not a constant model parameter,
but depends on the fourth-order tensor S. Before giving the explicit expression,
the physical interpretation of S is briefly discussed.

Within the Teodosiu model, the strength due to dislocation structures is de-
composed into a part associated with the currently active slip systems (denoted
as SD) and the one related to latent slip systems (denoted as SL). For such
parts, Teodosiu postulated the evolution equations

ṠL = −cSL

(
‖SL‖
S∞

)nL

SL λ (4.5)

and

ṠD = cSD [g (S∞ − SD)− h SD] λ. (4.6)

According to Eqs. (4.5) and (4.6), no evolution equation for the total tensor
S is assumed. As stated in Wang et al. (2008), that leads to mathematical
problems. To be more precise, the Teodosiu model is overdetermined from a
mathematical point of view. However, this deficiency is not crucial, since it
can be eliminated in a straightforward manner, cf. Wang et al. (2008). The re-
spective modification has been considered in the final implementation. While
cSL, cSD, nL and S∞ are constant model parameters, g and h are deformation-
dependent. Without going into too much detail, such functions are related to
the effects of work hardening stagnation and resumption, cf. Haddadi et al.
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(2006). These effects, although important for some applications, are not the
focus of the present thesis. Therefore, they are not discussed here. The inter-
ested reader is referred to Remark 3.

Having defined the evolution of the fourth-order tensor S, the saturation value
Q∞kin is postulated to be

Q∞kin = Q
(0)
kin + (1− f)

√
rt ‖S‖2 + (1− rt) S2

D (4.7)

where rt is a weighting factor and Q
(0)
kin is another model parameter. Accord-

ingly and in sharp contrast to a conventional Armstrong-Frederick-type law,
the saturation value is non-constant and implicitly depends on the loading
path. Furthermore, Eq. (4.7) implies a strong coupling between kinematic
and distortional hardening.

To understand the fundamentals of the model, a monotonic uniaxial loading
test followed by orthogonal loading is considered. Assuming a well-annealed
material (S = 0), S = SDN1 ⊗N1 during the first loading stage with N1

denoting the respective (constant) flow direction. Furthermore, SL = 0. Al-
together, that leads to a standard coupled isotropic/kinematic hardening re-

sponse within a kinematic saturation limit of Q∞kin = Q
(0)
kin + (1 − f) ||S||

(since ||S|| = SD during the first loading stage). When the loading path
is subsequently changed, indicated by N2, the new initial conditions are
SD = N2 : S : N2 and SL = S − SDN2 ⊗ N2. Consequently, the part
of S which was related to the currently active dislocations during the first
loading stage, now corresponds to latent slip systems. While isotropic hard-
ening is not affected by this flip, since it depends only on the equivalent plas-
tic strain αiso and the norm of S, it leads to the different saturation value
Q∞kin = Q

(0)
kin + (1 − f)

√
rt ||S|| for kinematic hardening. Thus, if rt > 1, the

new saturation value is higher, resulting in a cross hardening effect.

A careful analysis reveals that isotropic, kinematic and distortional hardening
are strongly coupled within the Teodosiu model. For this reason, a precise
interpretation of the model and its interactions is not straightforward, al-
though the underlying idea can be relatively well understood by considering
the aforementioned mechanical experiment (orthogonal loading). Furthermore
and equally important, the cross hardening effect is only taken into account
through kinematic hardening. That can be seen as follows: Isotropic harden-
ing cannot contribute to cross hardening. Furthermore, ||S|| is also constant,
if the loading path changes. Therefore, the only possibility to describe cross
hardening is through the back stress, see Eq. (4.1). This is indeed the case,
since the saturation value Q∞kin is sensitive with respect to a change of the load-
ing path as discussed in the previous paragraph. However, that is the only
consideration of cross hardening within the model. In particular, a distortion
of the yield function is not accounted for. In summary, the main motivation
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for the Teodosiu model seems to be the precise description of work hardening
stagnation, softening and resumption.

Remark 3 For the sake of completeness, the functions g and h governing
the evolution of S due to currently active dislocations are briefly discussed, cf.
Eq. (4.6). The latter is given by

h =
1

2

(
1− Qkin : N

Q∞kin (devΣ−Qkin) : N
Σ̄e

)
. (4.8)

Accordingly, Eq. (4.8) defines an interaction between kinematic hardening and
the fourth-order tensor S and leads to a small decrease in SD (the rate) at the
beginning of a reversed deformation path, cf. Haddadi et al. (2006).

In contrast to h, the function g depends on the so-called polarity tensor P
introduced by the Armstrong-Frederick-rule

Ṗ = cP (N − P) λ (4.9)

Here, cP is a model parameter. In the sense of physics, P grows into the
direction of the current plastic flow direction. However, P does not change
its direction spontaneously which is implemented by the memory term P λ in
Eq. (4.9). Loading path changes can be identified by the projection

PD = P : N . (4.10)

With this projection, the function g in Eq. (4.6) is defined as

g =

 1− cP
cSD+cP

∣∣ SD
S∞ − PD

∣∣ if PD ≥ 0

(1 + PD)nP
(
1− cP

cSD+cP

SD
S∞

)
otherwise

(4.11)

where nP is another model parameter. As explained in Haddadi et al. (2006),
the continuous function g has been designed to capture work hardening stag-
nation and resumption.

4.1.2. Extensions of the Teodosiu model for magnesium alloys

By combining Eqs. (3.10) and (4.1), the Teodosiu model can be incorporated
into the CB2004 yield function, cf. Cazacu & Barlat (2004), i.e.

φ = J
3
2
2 − J3 −Q3

0 −Q3
iso − f ‖S‖, (4.12)
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Certainly, two different fourth-order tensors S1 and S2 could also have been
introduced resulting in

φ = J
3
2
2 − J3 −Q3

0 −Q3
iso − f1 ‖S1‖ − f2 ‖S2‖. (4.13)

However, since S affects only isotropic and kinematic hardening, both formu-
lations are essentially equivalent. Due to computational efficiency, only one
tensor S is thus chosen here. In line with Wang et al. (2008), this tensor is
assumed to be governed by the evolution equation

Ṡ = λ g cSD S
∞N ⊗N − λ (g + h) cSD SDN ⊗N︸ ︷︷ ︸
= ṠD N ⊗N , see Eq. (4.6)

−λ cSL

{
‖SL‖
S∞

}nL

SL︸ ︷︷ ︸
= ṠL, see Eq. (4.5)

.

(4.14)

Although formally identical to Eq. (4.6) and Eq. (4.5), the modified Teodosiu-
type evolution equation (4.14) solves the mathematical inconsistencies of the
original model, cf. Wang et al. (2008). While the function g in Eq. (4.14) has
not to be changed, that is not the case for h. This function reads

h =
1

2

(
1− Qkin : N

Q∞kin (devΣ−Qkin) : N
Σ̄e

)
, (4.15)

and hence, it depends through Σ̄e on the shape of the yield function, see
Eqs. (4.1) and (4.2). Inspired by Eq. (4.12), the equivalent stress measure Σ̄e

is chosen as

Σ̄e =

∣∣∣∣∣
(
J

3
2
2 − J3

) 1
3

∣∣∣∣∣ . (4.16)

The remaining equations do not have to be modified, i.e., isotropic and kine-
matic hardening are still governed by Eqs. (4.3) and (4.4) and an associative
flow rule is adopted.

4.1.3. Thermodynamical consistency

In the present section, thermodynamical consistency of the resulting model
is analyzed. Since thermodynamical aspects have not been considered in the
original Teodosiu model, some additional assumptions are required. Strictly
speaking, without specifying an energy, one can neither prove nor disprove
thermodynamical consistency.
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To analyze thermodynamical consistency, the additional assumption

Ψp = Ψp
iso(αiso) + Ψp

kin(αkin) + Ψp
dis(E), S := −∂EΨ (4.17)

is made, i.e., the energy due to cold work is decomposed into isotropic, kine-
matic and distortional hardening (or cross hardening). While the exponential
function

Ψp
iso(αiso) = Q∞iso (αiso + exp [−ciso αiso]) (4.18)

is assumed for isotropic hardening, quadratic functions are chosen for kine-
matic and cross hardening, i.e.

Ψp
kin :=

c̃kin

2
αkin : αkin, Ψp

dis :=
cdist

2
E :: E. (4.19)

Here E is an internal variable conjugate to S. Since the closed-form solution of
Eq. (4.3) yields an exponential hardening response Q(αiso), Eq. (4.18) is equiv-
alent to the assumption within the original Teodosiu model. The quadratic
functions (4.19) are motivated from the analogy between Eq. (4.4) and the
classical Armstrong-Frederick model (compare Eq. (4.19) to Eq. (3.15) and
Eq. (4.4) to Eq. (3.17)).

With such assumptions, the reduced dissipation inequality (3.6) is obtained as

D = λΣ :
∂φ

∂Σ
+
(
Qisoα̇iso +Qkin : α̇kin + S :: Ė

)
≥ 0. (4.20)

Implicitly, the existence of a hyperelastic response has been assumed in Ineq. (4.20),
see Eq. (3.4). Inserting the evolution equations (4.14, 4.4), together with the
associative flow rule Lp = λ ∂Σφ and the associative hardening rule

α̇iso = λ
∂φ

∂Qiso
= −3λQ2

iso. (4.21)

into the reduced dissipation inequality (4.20) yields, after a lengthy but nev-
ertheless straightforward transformation:

D = 3 λ Q3
0 + 3 λ f ‖S‖

+λ

(∥∥∥∥ ∂φ∂Σ

∥∥∥∥− ckin

c̃kin
Q∞kin

)
Qkin : N + λ

ckin

c̃kin
Qkin : Qkin

+λ

(
cSD

cdist
(g + h)N : S : N − λ cSD S

∞

cdist
g

)
S :: (N ⊗N)

+λ
cSL

cdist

{
‖S− (N : S : N) N ⊗N‖

S∞

}nL

S

:: [S− (N : S : N) N ⊗N ] ≥ 0. (4.22)
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Here, the positive homogeneity of degree three of the yield function with re-
spect to isotropic, distortional hardening and the relative stresses has been
used (for each of the aforementioned variables independently, see Remark 10).
The terms 3 λ Q3

0, 3 λ f ‖S‖ and λ ckin/c̃kin Qkin : Qkin are clearly non-
negative. Accordingly, sufficient conditions for thermodynamical consistency
are given by

λ

(∥∥∥∥ ∂φ∂Σ

∥∥∥∥− ckin

c̃kin
Q∞kin

)
Qkin : N ≥ 0 (4.23)

and

λ

(
cSD

cdist
(g + h)N : S : N − λ cSD S

∞

cdist
g

)
S :: (N ⊗N)

+λ
cSL

cdist

{
‖S− (N : S : N) N ⊗N‖

S∞

}nL

S

:: [S− (N : S : N) N ⊗N ] ≥ 0. (4.24)

Such inequalities are evidently highly non-linear and thus, cannot be enforced
in a straightforward manner. Unfortunately, without enforcing them, the dis-
sipation inequality is usually not fulfilled. That could be confirmed by several
numerical simulations.

4.2. The Levkovitch & Svendsen model and its extensions

4.2.1. Fundamentals

The fundamentals of the Levkovitch & Svendsen model are concisely reviewed
here. Further details can be found in Noman et al. (2010).

Neglecting distortional hardening, the Levkovitch & Svendsen model repre-
sents a special case of the Teodosiu model presented in the previous section.
For instance, the yield function is obtained by setting the model parameter f
in Eq. (4.1) to zero resulting in

φ = Σ̄e −Q0 −Qiso (4.25)

with

Σ̄e =
√

(devΣ−Qkin) : H : (devΣ−Qkin). (4.26)

Furthermore, isotropic hardening is again defined by

Q̇iso = ciso(Q∞iso −Qiso) λ (4.27)
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whereas kinematic hardening is still governed by the evolution equation

Q̇kin = ckin(Q∞kin N −Qkin) λ. (4.28)

In contrast to the Teodosiu model, the material parameters ckin and Q∞kin in
Eq. (4.28) are now constant, i.e., standard Armstrong-Frederick-type evolution
equations are used (or Voce rule in the case of isotropic hardening).

Again in line with the Teodosiu model, the effects due to currently active
dislocations (denoted as dynamic part in the Levkovitch & Svendsen model;
indicated by the subscript D) and latent slip systems (denoted as latent part in
the Levkovitch & Svendsen model; indicated by the subscript L) are described
by a fourth-order tensor B. Its evolution is assumed to be

Ḃ = cD (sD N ⊗N − BD)λ+ cL [sL (Idev −N ⊗N)− BL] λ, (4.29)

where Idev is the fourth-order deviatoric projection tensor (devA = Idev : A,
∀A). Accordingly, the first term governing the dynamic part is of Armstrong-
Frederick-type. The similarity to the Teodosiu model becomes evident, if the
functions g and h in Eq. (4.14) are assumed as constant and uniaxial tension
is considered. In this case, only the part due the currently active slip systems
evolves yielding an evolution equation of the form

Ṡ = λ ÂN ⊗N − λ B̂ S (4.30)

for the Teodosiu model. By comparing Eq. (4.30) to the first term in Eq. (4.29),
it can be clearly seen that the dynamic part in the Levkovitch & Svendsen
model is a special case of the Teodosiu model. In contrast to Haddadi et al.
(2006), the same evolution equation is also used for the latent part within the
Levkovitch & Svendsen model, see Eq. (4.29).

So far, the Levkovitch & Svendsen model can be interpreted as a special case of
the Teodosiu model in which hardening stagnation, softening and resumption
have been excluded (the functions g and h are constant model parameters).
However, the crucial difference is that the fourth-order tensor B directly affects
the shape of the yield function. This idea goes back to Baltov & Sawczuk
(1965) and is implemented within the Levkovitch & Svendsen model by setting

Ḣ = Ḃ. (4.31)

As a consequence of Eq. (4.31), the shape of the yield surface changes during
deformation. That allows inclusion of the cross hardening effect in a consistent
manner. Another important feature of the Levkovitch & Svendsen model is
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that isotropic, kinematic and distortional hardening are uncoupled (the evolu-
tion equations). Hereby, the physical interpretation of the equations becomes
less complicated.

4.2.2. Extensions of the Levkovitch & Svendsen model for
magnesium alloys

To model magnesium, the Hill yield function defined by Eqs. (4.25) and (4.26)
is again replaced by the one proposed by Barlat and co-workers (Cazacu &
Barlat, 2004), i.e.

φ = J
3
2
2 − J3 −Q3

0 −Q3
iso. (4.32)

According to Eqs. (3.10) and (3.11), the material’s symmetry is captured
within the CB2004 yield function by the two fourth-order transformation ten-
sors Hi (J2 = J2(H1) and J3 = J3(H2)). Therefore, it is reasonable to intro-
duce two independent evolution equations of the type (4.29). Consequently,

Ḣi = λ cDi (sDiN ⊗N −HDi)+λ cLi [sLi (Idev −N ⊗N)−HLi] i ∈ {1; 2}
(4.33)

is chosen.

Eqs. (4.32) and (4.33) are the only modifications required to adapt the Lev-
kovitch & Svendsen model to magnesium. Isotropic and kinematic hardening
are assumed to be still governed by Eqs. (4.27) and (4.28).

4.2.3. Thermodynamical consistency

Analogously to the Teodosiu model, thermodynamical aspects have not been
considered in the original Levkovitch & Svendsen model. Particularly, no
Helmholtz energy was introduced. However an energy is required in order to
analyze the Second Law of thermodynamics. For this reason, some additional
assumptions are required.

The first assumption is the existence of a Helmholtz energy Ψ which is ad-
ditively decomposed into Ψe and Ψp. While the neo-Hooke model (3.13) is
adopted for Ψe, Ψp is additively split into the different hardening mecha-
nisms, see Eqs. (4.17). This split agrees with an uncoupling of the hardening
mechanisms as considered within the original Levkovitch & Svendsen model.
Assuming further that the hardening mechanisms governing the tensors H1
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and H2 are also uncoupled leads eventually to

Ψp
dis = Ψp

dis1 + Ψp
dis2, Ψp

disi :=
1

2
cdisi Ei :: Ei, Hi := −∂EiΨ

p. (4.34)

Again choosing the exponential function (4.18) and the associative evolution
equation (4.21) for isotropic hardening, the quadratic energy (4.19)1 for kine-
matic hardening, together with the associative flow rule Lp = λ ∂Σφ, the
reduced dissipation inequality

D = Σ : Lp +Qiso α̇iso +Qkin : α̇kin + H1 :: Ė1 + H2 :: Ė2 ≥ 0 (4.35)

can be rewritten as

D = 3 λ Q3
0 + λ

ckin

c̃kin
Qkin : Qkin + λ

cLi
cdisi

Hi :: Hi

+λ

(
1− ckin Q

∞
kin

c̃kin ‖∂Σφ‖

)
Qkin : ∂Σφ

−λ cLi sLi

cdisi
Hi :: Idev

−λ [cDi sDi − cLi sLi + (cLi − sLi)N : Hi : N ]

cdisi
Hi

:: (N ⊗N) ≥ 0. (4.36)

Again, the positive homogeneity of degree three of the yield function with
respect to isotropic, distortional hardening and the relative stresses has been
used (for each of the aforementioned variables independently, see Remark 10).
In Eq. (4.36), a summation over i from one to two has to be carried out.
Although the first line in Ineq. (4.36) is non-negative, a resulting overall non-
negative dissipation can usually not be guaranteed. That was also confirmed by
several numerical simulations. Furthermore, since the inequality is highly non-
linear, it cannot be enforced in a straightforward manner during the calibration
of the model parameters either.

4.3. The Feigenbaum & Dafalias model and its extensions

4.3.1. Fundamentals

Finally, the fundamentals of the Feigenbaum & Dafalias model are briefly
discussed. However and in contrast to the original work of Feigenbaum &
Dafalias (2007, 2008); Plesek et al. (2010), a finite strain description in terms
Mandel stress is considered here in order to fulfill the principle of material
frame indifference automatically.
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In line with the Teodosiu and the Levkovitch & Svendsen models, a Hill-type
yield function represents the starting point. However, Feigenbaum & Dafalias
considered a slightly different version

φ = Σ̄2
e −Q2

iso, (4.37)

with

Σ̄e =
√

(devΣ−Qkin) : H : (devΣ−Qkin). (4.38)

Accordingly, the first term of the yield function is now positively homogeneous
of degree two with respect to the relative stresses devΣ −Qkin, whereas it is
positively homogeneous of degree one within the original Teodosiu and the
Levkovitch & Svendsen models.

Concerning isotropic and kinematic hardening, the Feigenbaum & Dafalias
model is also based on Armstrong-Frederick-type evolution equations (or Voce
rule). To be more precise the slightly modified equations

Q̇iso = λ κ1 Qiso (1− κ2 Qiso), (4.39)

and

Q̇kin = λ ‖∂Σφ‖ a1 (N − a2 Qkin) (4.40)

are employed where κ1, κ2, a1 and a2 are model parameters.

So far, all models show strong similarities. However, the distortion of the yield
function is captured differently in Feigenbaum & Dafalias (2007, 2008); Plesek
et al. (2010). To be more precise, the major goal pursued in Feigenbaum
& Dafalias (2007) was to capture the higher curvature of the yield surface
in loading direction and the respective flattening in the opposite direction.
This effect is modeled through the projection of the effective current loading
direction

N r =
devΣ−Qkin

‖devΣ−Qkin‖
(4.41)

onto the previous loading direction represented by the back stress. This pro-
jection shows some similarities to Eq. (4.10) within the Teodosiu model. Using
the aforementioned projection, the fourth-order tensor H defining the shape
of the yield functions is assumed as

H = H0 + (N r : Qkin)A, (4.42)

where the fourth-order tensor A is introduced according to

Ȧ = −λ A1 ‖devΣ−Qkin‖
2

[
(N r : Qkin) N r ⊗N r +

3

2
A2 A

]
. (4.43)
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Here, A1 and A2 are model parameters.

In order to understand the model, the aforementioned projection which de-
scribes the curvature difference in the loading and the opposite direction is
switched off first by setting N r : Qkin = 1. In this case, Eqs. (4.42, 4.43) can
be simplified to

Ḣ = −λ A1

[
(devΣ−Qkin)⊗ (devΣ−Qkin) +

3

2
A2 ‖devΣ−Qkin‖

2 A
]
.

(4.44)

According to Eq. (4.44) and in line with the Levkovitch & Svendsen model
(see Eq. (4.29)) and the Teodosiu model (see Eq. (4.14)), distortional hard-
ening is again modeled by an Armstrong-Frederick-type evolution equation.
The only slight difference is that the flow direction N is replaced by the “ra-
dial” direction N r in Eq. (4.44). However, this does not lead to significant
differences. Furthermore, all effects are incorporated into only one evolution
equation in the Feigenbaum & Dafalias model. In contrast, a decomposition
into dynamic and latent parts is considered within the Teodosiu as well as
within the Levkovitch & Svendsen model.

Having discussed the special situation N r : Qkin = 1, focus is now on the
general case. Conceptually, distortional hardening is still modeled by an
Armstrong-Frederick-type evolution equation then. However, according to the
factor N r : Qkin the effective material parameters of this evolution equation
can change - even their signs. This precisely yields a higher curvature of the
yield function in the loading direction and a flattening in the opposite direc-
tion.

In summary, the difference between the Feigenbaum & Dafalias model and the
Levkovitch & Svendsen model is the projection factorN r : Qkin. However, this
factor does have an important effect on the evolution of the yield function. It is
realized by a coupling between kinematic and distortional hardening through
which the overall model becomes more complex.

4.3.2. Extensions of the Feigenbaum & Dafalias model for
magnesium alloys

Based on the similarities between the original Feigenbaum & Dafalias model
and the original Levkovitch & Svendsen model, the extensions necessary for
the description of magnesium are also similar. Conceptually, the only signif-
icant difference is related to distortional hardening. In this connection, the
two fourth-order tensors (4.33) governing the evolution of the CB2004 yield
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function (4.32) are assumed to be

Hi = H0i + (N r : Qkin)Ai i ∈ {1; 2}. (4.45)

Both fourth-order tensors Ai are independently governed by equation (4.43),
i.e.

Ȧi = −λA1i‖devΣ−Qkin‖
2

[
(N r : Qkin)N r ⊗N r +

3

2
A2iAi

]
. (4.46)

4.3.3. Thermodynamical consistency

The Feigenbaum & Dafalias model is the only one of the distortional hard-
ening approaches which has been derived from thermodynamical principles.
Therefore, its original form fulfills the dissipation inequality within a geomet-
rically linearized setting. However, here the more general case is considered.
To be more precise, the extended model with the yield function as proposed
in Cazacu & Barlat (2004) and a finite strain hyperelastoplasticity framework
is adopted (see Chapter 3).

Following Subsection 4.2.3, the Helmholtz energy is additively decomposed
according to

Ψ = Ψe + Ψp
iso(αiso) + Ψp

kin(αkin) + Ψp
dis1(E1) + Ψp

dis2(E2) (4.47)

with

Ψe = Eq. (3.13) Ψp
iso = Eq. (4.18)

Ψp
kin = Eq. (4.19)1 Ψp

disi = Eq. (4.34)2. (4.48)

Accordingly, a neo-Hooke model is used for the elastic response, exponential
saturation is considered for isotropic hardening, whereas kinematic and distor-
tional hardening are described by quadratic functions. In order to make the
notations comparable, the hardening parameters c̃kin and cdisi are set to

c̃kin = a1 cdisi = A1i. (4.49)

Inserting Eqs. (4.47 to 4.49), the evolution equations for distortional hardening
(see Eqs. (4.43, 4.45)), the evolution equation for kinematic hardening (see
Eq. (4.40)), an associative evolution equation for isotropic hardening and an
associative flow rule into the reduced dissipation inequality (4.35) eventually
yields

D = λ

(
3Q3

0 + a2

∥∥∥∥ ∂φ∂Σ

∥∥∥∥Qkin : Qkin

)
(4.50)
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+λ ‖Σ−Qkin‖
2

(N r : Qkin) (N r ⊗N r) :: Ai︸ ︷︷ ︸
=: R

+
3

2
A2iAi :: Ai

 ≥ 0.

Again, the positive homogeneity of degree three of the yield function has been
applied here and a summation over i from one to two has to be carried out. By
comparing Ineq. (4.50) to its counterpart (4.36) of the extended Levkovitch &
Svendsen model it can be seen, that the mathematic structure of dissipation
Ineq. (4.50) is significantly simpler. That is due to the thermodynamically
consistent structure of the original Feigenbaum & Dafalias model. Only the
term R in Ineq. (4.50) can change its sign. Consequently, a necessary condition
for thermodynamical consistency is R ≥ 0. However, this condition turned out
to be too restrictive for calibrating the model parameters. For this reason, the
weaker sufficient condition

(N r : Qkin) (N r ⊗N r) :: Ai +
3

2
A2iAi :: Ai ≥ 0. (4.51)

is enforced. With Ineqs. (4.51), a thermodynamically consistent set of material
parameters can be determined. However, the enforcement of Ineq. (4.51) is
numerically relatively expensive and strictly speaking, this inequality is only
checked for a finite number of loading states. Therefore, thermodynamical
consistency cannot be guaranteed for arbitrary loading paths.

4.4. Numerical implementation

The novel constitutive models as presented in Subsections 4.1.2, 4.2.2 and
4.3.2 have been implemented by a state-of-the-art return-mapping scheme, cf.
Simo (1998); Simo & Hughes (1998). In this connection, the flow rule has
been discretized by an exponential mapping, while the remaining evolution
equations have been approximated by means of a backward Euler integration.
As a consequence, the resulting scheme is fully implicit and first-order accu-
rate. In contrast to the frameworks Feigenbaum (2008); Noman et al. (2010);
Haddadi et al. (2006) based on a co-rotated and hypoelastic framework, the
implemented hyperelastoplastic algorithmic formulation shows significant ad-
vantages from a physical, as well as from a mathematical point of view, see
Simo (1998); Simo & Hughes (1998). Further details are omitted here, but
will be discussed in Section 6.5.



5. Identification of model parameters

Before the constitutive model is used in a finite element simulation, the ma-
terial parameters must be calibrated by comparison of numerical results with
experimental observations taken from a distinct material. In the present chap-
ter, the implemented algorithm as well as the result of model parameter iden-
tification are discussed. The experimental basis and the calibration procedure
are demonstrated in Sections 5.1 and 5.2, while the yield surface evolution for
the original models and the extended models with calibrated material param-
eters are discussed in Sections 5.3 and 5.4, which have been taken from Shi &
Mosler (2012).

5.1. Experimental basis for parameter calibration

The material under investigation is the magnesium alloy AZ31 in a heat treated
condition (AZ31 O-temper) with a thickness of 1.3 mm. The experiments were
conducted using flat specimens prepared according to the DIN 50125-H stan-
dard. Each specimen has a gage length of 60 mm and a width of 12.5 mm. The
specimens are oriented in the rolling direction (RD), 45◦ and 90◦ (TD) from
RD, as shown in Fig. 5.1. The tests were conducted using a ZWICK R© univer-
sal testing machine. For deformation measurement, mechanical extensometer
and an optical field deformation measuring system (ARAMIS R© system) were
employed. The detailed experimental setup can be found in Nebebe (2011).

The mechanical responses are obtained from the tensile tests in terms of
direction-dependent flow curves and r-values. The flow curves relate the true
stress and to the logarithmic plastic strain. The anisotropy of sheets is cap-
tured by the r-value, defined as:

r =
εp

w

εp
t

, (5.1)

where εp
w and εp

t are the logarithmic plastic strains in the width and thickness
direction, respectively. Further details can be found in Nebebe (2011).

29
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Plain sheet

RD

TD

45◦

Figure 5.1.: Tensile test specimens geometry

5.2. Procedure for calibration of model parameters

The objective function for the calibration of the model parameters is:

F =

m∑
j=1

[
n∑
i=1

(
Σsim
i − Σexp

i

Σexp
i

)2

+ cr

(
rsim − rexp

rexp

)2
]
j

, (5.2)

where, j is related to the different loading paths, i is the loading step within the
considered loading path, Σexp and rexp are measured stress and r values, Σsim

and rsim are the stress and the r values predicted by the constitutive model and
cr is a weight coefficient. It should be mentioned that, for small elastic strains
F e → I, the true stress (σy) is equivalent to the corresponding Mandel stress
(Σy). Therefore, the Mandel stress can be used for the flow curve. Concerning
the equivalent plastic strain for the flow curve, the standard definition

ε̇p =
√
Lp : Lp (5.3)

is employed. Within the computation, the measured plastic strain (equivalent
plastic strain) is taken and the stresses are computed. Details of the respective
algorithm will be discussed in Subsection 6.5.3.

The underlying mathematical problem of parameter identification is the min-
imization of the objective function (5.2) depending on the model parameters,
i.e., to minimize the difference between measured and computationally pre-
dicted mechanical response. It was implemented by a combination of a C++



5.3. Numerical predictions for non-radial loading paths 31

program and a Scilab program. The scilab code represents a generic mini-
mization algorithm and acts like a driver for the C++ code which, in turn,
computes the objective function for a certain set of material parameters. Al-
though the C++ code improves the performance of the overall code signifi-
cantly, the calibration process is still very time consuming. A further boost
of the implementation is realized by running the code on a blade server. For
that purpose, the computing load is distributed by message passing interface
(MPI). The minimization is done in two steps. In the first of those, an initial
set of material parameters is computed. For that purpose, the space of ad-
missible model parameters is discretized by a grid, i.e., the objective function
is evaluated for some sets of material parameters. In the second step, the set
showing the smallest objective function is used in a deterministic Nelder-Mead
algorithm, see Scilab Documentation (2011). In both steps, physical admis-
sibility of the model parameters has to be checked. For that purpose, the
following constraints are enforced:

1. Convexity of yield surface, see Remark 4.

2. Second law of thermodynamics, i.e., the dissipation inequality, see Eq. (3.6).

As work hardening stagnation and softening are not the focus of present work,
the simplified extended Teodosiu model is considered, refer to Eq. (4.30).

Remark 4 For further details concerning the convexity constraint of the yield
surface and its implementation, the interested reader is referred to Nebebe
(2011).

5.3. Numerical predictions for non-radial loading paths with
the original and the extended models

Although the different distortional hardening models have already been dis-
cussed in detail in the previous sections, their precise predictive capabilities
cannot be estimated in a straightforward manner. That holds particularly for
the extended models suitable for the analysis of magnesium. For this reason,
three different loading paths are considered in the present section, i.e.

• uniaxial tension

• uniaxial tension followed by reverse loading

• uniaxial loading followed by uniaxial loading into an orthogonal direc-
tion.

For these paths, the mechanical response as predicted by the different consti-
tutive models is compared to each other. While in Subsection 5.3.1 the original
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models are used (reformulated in a hyperelastoplastic framework and a yield
surface in terms of Mandel stress in order to guarantee material frame indif-
ference automatically), the extended material models are analyzed in Subsec-
tion 5.3.2. For that purpose, the material parameters of the extended models
are calibrated for the Mg alloy AZ31.

5.3.1. The original models of Teodosiu, Levkovitch & Svendsen and
Feigenbaum & Dafalias

The fundamental characteristics of the different distortional hardening models
according to Feigenbaum (2008); Noman et al. (2010); Haddadi et al. (2006)
are briefly presented here. Since the model parameters used in the cited refer-
ences correspond to different materials, the hardening responses predicted by
the models can only be qualitatively compared. However, the final extended
models analyzed in Subsection 5.3.2 are calibrated for the same material. The
parameters of the different hardening models are summarized in Tab. 5.1. Ac-
cordingly, an interstitial free mild steel DC06 (1mm) (for the Teodosiu model),
the ferritic steel LH800 (for the Levkovitch & Svendsen model) as well as the
Al alloy AU4G T4 (for the Feigenbaum & Dafalias model) are the materials
under investigation.
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Figure 5.2.: Evolution of the yield surfaces as predicted by the original Teodo-
siu model for interstitial free mild steel DC06 (1mm), monotonic
uniaxial tension test
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The Teodosiu model - Interstitial free mild steel DC06 (1mm),
cf. Haddadi et al. (2006),Hiwatashi et al. (1998)

Q0 (MPa) ciso Q∞iso (MPa) ckin Q
(0)
kin (MPa)

122.2 27.3 80.0 614.6 6.9

cSD cSL S∞ (MPa) n nP rt f cP nL

3.9 1.1 246.7 0 27.7 1.9 0.415 2.2 3.0

The Levkovitch & Svendsen model - Ferritic steel LH800,
cf. Noman et al. (2010)

Q∞iso (MPa) ciso Q∞kin (MPa) ckin sD cD sL cL

254.519 4.481 90.896 32.695 0 19.712 -0.863 5.0

The Feigenbaum & Dafalias model - Aluminum alloy AU4G T4 (2024),
cf. Feigenbaum & Dafalias (2007)

E (MPa) ν Q0 (MPa)

75000 0.33 205

κ1 κ2 (MPa−1) a1 a2 (MPa−1) A1 (MPa−4) A2 (MPa2)

2 · 105 0.004 2 · 106 0.015 20 2000

Table 5.1.: Model parameters of the original distortional hardening models,
taken from literature for various materials, cf. Haddadi et al.
(2006); Hiwatashi et al. (1998); Noman et al. (2010); Feigenbaum
& Dafalias (2007)



34 Chapter 5. Identification of model parameters

-300 -200 -100 0 100 200 300
-300

-200

-100

0

100

200

300

 

(MPa)

 122  -163
 162  -203
 202  -243

(MPa)

reverse loading

loading direction

(M
Pa

)

Figure 5.3.: Evolution of the yield surfaces as predicted by the original Teodo-
siu model for interstitial free mild steel DC06 (1mm), monotonic
uniaxial tension test followed by reverse loading (compression)
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Figure 5.4.: Evolution of the yield surfaces as predicted by the original Teodo-
siu model for interstitial free mild steel DC06 (1mm), monotonic
uniaxial tension test followed by monotonic uniaxial tension into
the orthogonal direction
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The mechanical responses obtained from the original Teodosiu model are
shown in Figs. 5.2 to 5.4 in the form of evolving yield surfaces. Concerning the
original Teodosiu model, isotropic hardening is the main hardening mechanism
during monotonic loading. If the loading direction is subsequently reversed,
see Fig. 5.3, the size of the yield surface increases slowly first (hardening stag-
nation). After the strain amplitude has reached a certain amplitude, the yield
surface increases significantly faster. Similarly, the size of the yield surface
changes slowly in the first stage after the loading path change to orthogonal
loading. However, kinematic hardening is now more pronounced compared to
uniaxial loading. Only when the rate of plastic deformation is again aligned
with the current loading direction, isotropic hardening is again the major
hardening mechanism. Independently of the loading case, the Teodosiu model
cannot predict a distortion of the yield function, since cross hardening is only
modeled by modifying isotropic and kinematic hardening.
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Figure 5.5.: Evolution of the yield surfaces as predicted by the original Lev-
kovitch & Svendsen model for ferritic steel LH800, monotonic uni-
axial tension test

The evolution of yield surfaces predicted by the original Levkovitch & Svendsen
model is shown in Figs. 5.5 to 5.7. For monotonic loading, the yield function
becomes distorted with a preferred elongation in the loading direction. Since
the largest diameter of the initial yield surface is associated with a stress state
of the type Σ11 = Σ22, the elongation along Σ11 during deformation leads
to a rotation of the yield surface’s principal axes. While the yield surface’s
diameter increases significantly in the loading direction, a small decrease in the
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Figure 5.6.: Evolution of the yield surfaces as predicted by the original Lev-
kovitch & Svendsen model for ferritic steel LH800, monotonic uni-
axial tension test followed by reverse loading (compression)
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Figure 5.7.: Evolution of the yield surfaces as predicted by the original Lev-
kovitch & Svendsen model for ferritic steel LH800, monotonic uni-
axial tension test followed by monotonic uniaxial tension into the
orthogonal direction
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Figure 5.8.: Evolution of the yield surfaces as predicted by the original Feigen-
baum & Dafalias model for Al alloy AU4G T4 (2024), monotonic
uniaxial tension test

orthogonal direction is also seen. The effects observed in the case of uniaxial
tension are also present for reverse loading and orthogonal loading. In sharp
contrast to the Teodosiu model, the original Levkovitch & Svendsen model
captures the cross hardening effect by a distortion of the yield surface.

Finally, the predictions obtained from the Feigenbaum & Dafalias are analyzed,
see Figs. 5.8 to 5.10. As expected, by coupling the kinematic and distortional
hardening, the yield surface shows a high curvature in the loading direction,
whereas it is rather flat in the opposite direction. This effects can be seen for
all loadings paths.

5.3.2. The extended models calibrated for the Mg alloy AZ31

Next, the extended distortional hardening models as discussed in Subsec-
tions 4.1.2, 4.2.2, 4.3.2 are applied to the modeling of magnesium. The re-
spective model parameters used to capture the mechanical response of the Mg
alloy AZ31 are summarized in Appendix A. They have been identified by the
algorithm discussed in Section 5.2. In this connection, loading in three different
directions (rolling (RD), transversal (TD) and 45◦) has been considered and
the numerical predictions have been compared to experimental measurements,
cf. Fig. 5.11. Additionally, the r-value at a strain amplitude of 5% was also
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Figure 5.9.: Evolution of the yield surfaces as predicted by the original Feigen-
baum & Dafalias model for Al alloy AU4G T4 (2024), monotonic
uniaxial tension test followed by reverse loading (compression)
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Figure 5.10.: Evolution of the yield surfaces as predicted by the original Feigen-
baum & Dafalias model for Al alloy AU4G T4 (2024), monotonic
uniaxial tension test followed by monotonic uniaxial tension into
the orthogonal direction
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included in the least square fit. The respective experimental data have been
taken from Mekonen et al. (2012). It has to be mentioned that the measure-
ments considered are not sufficient to identify the model parameters uniquely.
For that purpose, additional experiments like the measurements of Mg alloys
yield surfaces under non-radial loadings, which have not yet been conducted,
are required. Therefore, the predicted evolutions of the yield functions have
to be taken with care.
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Figure 5.11.: Flow curves and r values for AZ31. Comparison between exper-
iments and predictions by the extended models. Abbreviations:
sim.=simulation; ext.=extended; T.=Teodosiu; S.=Levkovitch
& Svendsen; F.=Feigenbaum & Dafalias, cf. Subsections 4.1.2,
4.2.2, 4.3.2, 5.3.2

The predictions of the extended distortional hardening models are shown in
Figs. 5.12 to 5.20. In line with the previous subsection and due to the struc-
ture of the underlying equations, the yield function’s shape of the extended
Teodosiu model does not change, cf. Figs. 5.12 to 5.14.

Distortion is predicted by the extended Levkovitch & Svendsen model, cf.
Figs. 5.15 to 5.17. As already shown in Figs. 5.5 to 5.7, a reorientation of the
yield function in the loading direction can be seen. However, this effect is less
pronounced for the Mg alloy AZ31 compared to the ferritic steel LH800.

While the mechanical response associated with the extended Teodosiu model
and the extended Levkovitch & Svendsen model are in line – at least, quali-
tatively – with the previous subsection, that is not the case for the extended
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Figure 5.12.: Evolution of the yield surfaces as predicted by the extended Teo-
dosiu model for the Mg alloy AZ31, monotonic uniaxial tension
test
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Figure 5.13.: Evolution of the yield surfaces as predicted by the extended Teo-
dosiu model for the Mg alloy AZ31, monotonic uniaxial tension
test followed by reverse loading (compression)
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Figure 5.14.: Evolution of the yield surfaces as predicted by the extended Teo-
dosiu model for the Mg alloy AZ31, monotonic uniaxial tension
test followed by monotonic uniaxial tension into the orthogonal
direction
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Figure 5.15.: Evolution of the yield surfaces as predicted by the extended Lev-
kovitch & Svendsen model for the Mg alloy AZ31, monotonic
uniaxial tension test
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Figure 5.16.: Evolution of the yield surfaces as predicted by the extended Lev-
kovitch & Svendsen model for the Mg alloy AZ31, monotonic
uniaxial tension test followed by reverse loading (compression)
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Figure 5.17.: Evolution of the yield surfaces as predicted by the extended Lev-
kovitch & Svendsen model for the Mg alloy AZ31, monotonic
uniaxial tension test followed by monotonic uniaxial tension into
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Feigenbaum & Dafalias model. According to Figs. 5.18 to 5.20, the yield func-
tion’s curvature is not higher in the loading direction compared to the opposite
direction for AZ31. A careful analysis of the underlying model parameters re-
veals that distortional hardening is virtually not active, e.g., the saturation
rate of the distortional hardening tensors A1i is much lower than the one for
isotropic hardening κ1, cf. Tab. A.2.
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Figure 5.18.: Evolution of the yield surfaces as predicted by the extended
Feigenbaum & Dafalias model for the Mg alloy AZ31, monotonic
uniaxial tension test

5.4. Discussion

According to the previous section, the extended Teodosiu, Levkovitch & Svend-
sen and the Feigenbaum & Dafalias models can capture some of the important
mechanical effects observed in magnesium alloy sheets, cf. Fig. 5.11. How-
ever, in the several optimization trials that have been carried out, an accurate
modeling of the stress-strain data together with r values was impossible for
the extended models.

Among these models, only the approach originally proposed by Teodosiu and
co-workers does not account for a distortion of the yield function, but in-
corporates cross hardening by modifying isotropic and kinematic hardening.
The unique feature of the Teodosiu model is the precise description of work
hardening stagnation, softening and resumption. This description requires a
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Figure 5.19.: Evolution of the yield surfaces as predicted by the extended
Feigenbaum & Dafalias model for the Mg alloy AZ31, monotonic
uniaxial tension test followed by reverse loading (compression)
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significantly larger number of material parameters compared to the extended
Levkovitch & Svendsen and Feigenbaum & Dafalias models. Since focus is on
the effect of texture evolution in magnesium sheets, the distortion of the yield
surface is the major issue, and thus, the extended Teodosiu model will not be
considered in the following.

By way of contrast, the extended Levkovitch & Svendsen model does account
for a distortion of the yield surface and, since work hardening stagnation,
softening and resumption are not described, the modified model requires just
four material parameters for the evolution equation of distortional hardening.
However, one drawback is the thermodynamical inconsistency of the model,
i.e., it does not fulfill the Second Law of thermodynamics.

Although the extended Feigenbaum & Dafalias model does not automatically
guarantee the fulfillment of the dissipation inequality either, thermodynamical
consistency can be enforced through Ineqs. (4.51). Another positive feature
is the small number of material parameters which is particularly appealing
within the material parameter identification process. The small number of
material parameters is related to the fact that distortional hardening is not
decomposed into hardening due to active slip systems and latent slip systems.
The only problem associated with the extended Feigenbaum & Dafalias model
is that the high curvature of the yield function in the loading direction and
the flattening in the opposite direction do not seem to fit the experimental
observations for Mg alloys, cf. Plunkett et al. (2006).

In summary, there is a need for a new macroscopic constitutive model that is
able to capture the distortion of the yield function due to texture evolution in
magnesium alloy sheets. Consequently, a new thermodynamically consistent
constitutive model is developed for Mg alloys in the next chapter.





6. A new thermodynamically consistent
constitutive model suitable for magnesium
alloys

In the present chapter, a new constitutive model for describing distortional
hardening in magnesium is elaborated. In contrast to the models discussed
in the previous chapters, the new approach is thermodynamically consistent
and thus, it fulfills the second law of thermodynamics for arbitrary (positive)
model parameters and loading paths. The predictive capabilities of the final
model are shown by analyzing the computed mechanical response for different
loading paths. Sections 6.1 and 6.2 have been taken from Shi & Mosler (2012).

6.1. Fundamentals

The starting point of the new model is again the CB2004 yield function (3.10).
However, in order to normalize the flow rule in advance, the original yield
function, which is positively homogeneous of degree three with respect to the
relative stresses, is replaced here by its positively homogeneous of degree one
counterpart

φ =

(
J

3
2
2 − J3

) 1
3

−Qiso −Q0. (6.1)

Clearly, by setting φ = 0 it can be seen that both functions span essentially
the same space of admissible stresses. Similarly to the extended Levkovitch &
Svendsen model (see Subsection 4.2.3), all hardening mechanisms are assumed
to be uncoupled leading to the Helmholtz energy

Ψ = Ψe + Ψp
iso(αiso) + Ψp

kin(αkin) + Ψp
dis1(E1) + Ψp

dis2(E2). (6.2)

In this connection and analogously to the previous models, an isotropic neo-
Hooke energy is adopted for the elastic response Ψe, isotropic hardening Ψiso

is captured by an exponential function and kinematic hardening Ψp
kin and

distortional hardening Ψp
disi are represented by quadratic functions, i.e.,

Ψe = Eq. (3.13) Ψp
iso = Eq. (4.18)

47
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Ψp
kin = Eq. (4.19)1 Ψp

disi = Eq. (4.34)2. (6.3)

The model is completed by suitable evolution equations. Concerning the flow
rule, isotropic and kinematic hardening, a convex plastic potential of the type

Ω = φ+
1

2

bkin

ckin
Qkin : Qkin (6.4)

is introduced (see Eq. (3.16)) leading to

Lp = λ
∂Ω

∂Σ
= λ

∂φ

∂Σ
, α̇iso = λ

∂Ω

∂Qiso
= λ

∂φ

∂Qiso
= −λ, α̇kin = λ

∂Ω

∂Qkin

.

(6.5)

According to Eq. (6.5), an associative flow rule and an associative evolution
equation for isotropic hardening are adopted, whereas an Armstrong-Frederick
model is used for kinematic hardening.

In order to derive evolution equations for distortional hardening of the type
Ḣi = F(λ), the similarities between the Teodosiu, the Levkovitch & Svendsen
and the Feigenbaum & Dafalias model are recalled. Essentially, all such models
postulate an Armstrong-Frederick-type evolution equation for the fourth-order
tensor related to cross hardening and the distortion of the yield surface. The
only differences are that Teodosiu also considered the effects of work harden-
ing stagnation, softening and resumption and Feigenbaum & Dafalias do not
decompose the evolution equation into dynamic and latent parts, cf. Noman
et al. (2010). As evident from Eqs. (6.4, 6.5) an Armstrong-Frederick-type
evolution equation automatically fulfilling the Second Law of thermodynamics
can be designed by means of a plastic potential Ω which contains, in addition
to the yield function, a quadratic term. For this reason, distortional hardening
can be described by the extended plastic potential

Ω = φ+
1

2

bkin

ckin
Qkin : Qkin +

1

2

bdis1

cdis1
H1 :: H1 +

1

2

bdis2

cdis2
H2 :: H2, (6.6)

where cdisi and bdisi are model parameters. Due to the additive structure of Ω,
Eqs. (6.5) are not affected. However, distortional hardening is now consistently
included by

Ėi = λ
∂Ω

∂Hi
, i ∈ {1; 2}. (6.7)

After a lengthy, but nevertheless straightforward calculation, Eqs. (6.7) can
be rewritten as

Ḣ1 = λ bdis1

[
−1

4
b1 J

1
2
2 ((Σ−Qkin)⊗ ξ1 + ξ1 ⊗ (Σ−Qkin))−H1

]
, (6.8)
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and

Ḣ2 = λ bdis2

[
1

6
b2 ((ξ2 · ξ2)⊗ (Σ−Qkin) + (Σ−Qkin)⊗ (ξ2 · ξ2))−H2

]
,

(6.9)

with the abbreviations

bi =
cdisi

bdisi

(
J

3
2
2 − J3

)− 2
3

. (6.10)

In Eqs. (6.8, 6.9), symmetry of Hi has been assumed and consistently enforced.
Although the structure of Eqs. (6.8) and (6.9) looks relatively complex, convex-
ity of Ω automatically guarantees thermodynamical consistency. In contrast to
the extended Feigenbaum & Dafalias models this holds true independently of
the chosen material parameters for distortional hardening. By using Eq. (6.6),
the dissipation can be conveniently computed in closed form. It eventually
results in

D = λ

(
2 Q0 +Qiso +

bkin

ckin
Qkin : Qkin

+
bdis1

cdis1
H1 :: H1 +

bdis2

cdis2
H2 :: H2

)
≥ 0, (6.11)

where the positive homogeneity of the yield function of degree one with respect
to the relative stresses, isotropic hardening and distortional hardening has been
considered, refer to Remark 10. Clearly, D is non-negative.

The new distortional hardening model requires two material parameters (cdisi

and bdisi) for each of the two distortional hardening tensors Hi. The only re-
maining problem for a model parameter identification is due to the postulated
convexity of φ, see also Plesek et al. (2010). Within the employed optimization
algorithm, a respective constraint has been incorporated (refer to Section 5.2).

Remark 5 From the structure of the evolution equations for H1 and H2, cf.
Eqs. (6.8, 6.9), they can be regarded as Armstrong-Frederick type. However,
the respective saturation value (tensor) is implicitly a function of H1 and H2.
Therefore, distortional hardening is only formally identical to an Armstrong-
Frederick-rule.

Remark 6 In line with the symmetry of the Mandel stresses (in the case of
an isotropic elastic model) and a potential description, the fourth-order tensors
Hi are assumed to show minor and major symmetry, i.e.,

Hijkl = Hjikl = Hijlk = Hklij .
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Moreover, the pressure invariance condition

Hiikl = 0

are also adopted.

6.2. Numerical predictions under non-radial loading paths

As described in Subsection 5.3.2, the parameters of the new model have been
calibrated by a standard least square approach including the flow curves for
tests along the RD, TD and 45◦ directions as well as the r-values at strain
amplitudes of 5%. The respective results are shown in Fig. 6.1.
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Figure 6.1.: Flow curves for AZ31. Comparison between experiments and pre-
dictions by the new model. The r-values at a strain amplitude of
5% are also included in the diagram

Accordingly, the agreement with respect to the flow curves is excellent. The
r-values are captured reasonably well compared to the predictions made by
other models.

Based on the calibrated model parameters, the evolution of the yield function
during reverse loading and orthogonal loading is computed, shown in Figs. 6.2
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to 6.4. For the sake of comparison and since the distortion of the yield function
is not very high, the results without distortional hardening are also presented,
see Figs. 6.2 to 6.4. The model parameters are given in Tab. A.2.
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Figure 6.2.: Evolution of the yield surfaces as predicted by the new model for
the Mg alloy AZ31. Monotonic uniaxial tension test

The shape change of the yield function can be seen best in the case of the
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Figure 6.3.: Evolution of the yield surfaces as predicted by the new model for
the Mg alloy AZ31. Monotonic uniaxial tension test followed by
reverse loading (compression)

orthogonal loading path. In this case, the principal diameter of the yield
surface always rotates slightly into the current loading direction, if distortional
hardening is taken into account. However, this effect is not very pronounced
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Figure 6.4.: Evolution of the yield surfaces as predicted by the new model for
the Mg alloy AZ31. Monotonic uniaxial tension test followed by
monotonic uniaxial tension into the orthogonal direction

here. Furthermore, the results have to be interpreted with care due to lack of
additional experiments, i.e., yield surface measurements for orthogonal loading
are currently not available for AZ31. In any case, the new model does capture
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the evolution of the yield function by simultaneously fulfilling the Second Law
of thermodynamics.

6.3. An alternative derivation of the novel constitutive model

In Section 6.1, the novel model has been derived from a convex plastic poten-
tial. Here, a slightly more general derivation is shown. The resulting family
of models contains, as a special case, also the model elaborated in Section 6.1.
The assumption concerning the Helmholtz energy as well as the yield function
are identical to those in Section 6.1 (see Eqs. (6.1,3.11)). However, the explicit
existence of a plastic potential is not postulated.

Certainly, the model has to fulfill the second law of thermodynamics. Com-
puting the flow direction

∂φ

∂Σ
=

1

2
J

1
2
2

(
J

3
2
2 − J3

)− 2
3

(ξ1 : H1)− 1

3

(
J

3
2
2 − J3

)− 2
3

(ξ2 · ξ2) : H2, (6.12)

the dissipation inequality

D = λΣ :
∂φ

∂Σ
+Qisoα̇iso−

1

Ckin
Qkin : Q̇kin−

1

Cdis1
H1 :: Ḣ1−

1

Cdis2
H2 :: Ḣ2

(6.13)

can be rewritten as

D = λ (Σ−Qkin) :

[
1

2
J

1
2
2

(
J

3
2
2 − J3

)− 2
3

(ξ1 : H1)

−1

3

(
J

3
2
2 − J3

)− 2
3

(ξ2 · ξ2) : H2

]
+λQkin :

∂φ

∂Σ
+Qisoα̇iso −

1

Ckin
Qkin : Q̇kin

− 1

Cdis1
H1 :: Ḣ1 −

1

Cdis2
H2 :: Ḣ2. (6.14)

The first two lines in Eq. (6.14) can be significantly simplified. More precisely,

λ (Σ−Qkin) :

[
1

2
J

1
2
2

(
J

3
2
2 − J3

)− 2
3

(ξ1 : H1)

−1

3

(
J

3
2
2 − J3

)− 2
3

(ξ2 · ξ2) : H2

]
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= λ

[
1

2
J

1
2
2

(
J

3
2
2 − J3

)− 2
3

(ξ1 : ξ1)− 1

3

(
J

3
2
2 − J3

)− 2
3

(ξ2 · ξ2) : ξ2

]

= λ

(
J

3
2
2 − J3

) 1
3

, (6.15)

which is consistent with the Euler theorem for positive homogeneous functions
(see Remarks 8, 9). In order to derive physically sound evolution equations,
the term (6.15) within the dissipation inequality is decomposed into two parts.
A similar approach was also used in Feigenbaum & Dafalias (2007). By in-
troducing a weighting coefficient w (model parameter), Eq. (6.15) is rewritten
as

λ (Σ−Qkin) :

[
1

2
J

1
2
2

(
J

3
2
2 − J3

)− 2
3

(ξ1 : H1)

−1

3

(
J

3
2
2 − J3

)− 2
3

(ξ2 · ξ2) : H2

]
= wλ

(
J

3
2
2 − J3

) 1
3

+(1− w)λ

[
1

2
J

1
2
2

(
J

3
2
2 − J3

)− 2
3

(ξ1 : ξ1)

−1

3

(
J

3
2
2 − J3

)− 2
3

(ξ2 · ξ2) : ξ2

]
. (6.16)

and the dissipation inequality is restructured accordingly, i.e.,

D = wλQ0 + wλQiso +Qisoα̇iso

+λQkin :
∂φ

∂Σ
− 1

Ckin
Qkin : Q̇kin

+(1− w)λ
1

2
J

1
2
2

(
J

3
2
2 − J3

)− 2
3

(ξ1 : ξ1)− 1

Cdis1
H1 :: Ḣ1

−(1− w)λ
1

3

(
J

3
2
2 − J3

)− 2
3

(ξ2 · ξ2) : ξ2 −
1

Cdis2
H2 :: Ḣ2, (6.17)

Here φ = 0, i.e.,

(
J

3
2
2 − J3

) 1
3

= Q0 + Qiso was utilized. This form of the

dissipation inequality suggests to decompose the dissipation into four parts,
each of those being non-negative. The first part is associated with isotropic
hardening and the initial size of yield surface, the second part corresponds to
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kinematic hardening and the third and fourth parts for distortional harden-
ing. By doing so, the second law of thermodynamics would automatically be
fulfilled.

Application of the standard associative evolution equation for isotropic hard-
ening

α̇iso = λ
∂φ

∂Qiso
= −λ (6.18)

results in

wλQ0 + wλQiso +Qisoα̇iso = wλQ0 + wλQiso − λQiso ≥ 0. (6.19)

Accordingly, the model parameter w has to fulfill the inequality

Qiso

Qiso +Q0
≤ w. (6.20)

Since again an exponential function is used in order to capture isotropic hard-
ening and furthermore, Qiso

Qiso+Q0
is a monotonically increasing function of Qiso,

Eq. (6.20) is replaced by

Q∞iso
Q∞iso +Q0

≤ w. (6.21)

For the kinematic hardening and distortional hardening parts within the dis-
sipation inequality

Qkin :

(
λ
∂φ

∂Σ
− 1

Ckin
Q̇kin

)
:= λCkQkin : Qkin, (6.22)

(1−w)λ
1

2
J

1
2
2

(
J

3
2
2 − J3

)− 2
3

(ξ1 : ξ1)− 1

Cdis1
H1 :: Ḣ1 := λCd1H1 :: H1, (6.23)

−(1−w)λ
1

3

(
J

3
2
2 − J3

)− 2
3

(ξ2 · ξ2) : ξ2 −
1

Cdis2
H2 :: Ḣ2 := λCd2H2 :: H2,

(6.24)

is assumed. By inserting Eqs. (6.22, 6.23, 6.24) into the dissipation inequality,
it can be seen that these evolution equations automatically fulfill the second
law of thermodynamics, since each of the four terms is non-negative. This



6.3. An alternative derivation of the novel constitutive model 57

underlying idea to use quadratic terms in Eqs. (6.22, 6.23, 6.24) is nowa-
days standard and can be found in several textbooks, see also Feigenbaum &
Dafalias (2007). Eqs. (6.22, 6.23, 6.24) yield the evolution equations

Q̇kin = λCkinCk

(
1

Ck

∂φ

∂Σ
−Qkin

)
, (6.25)

Ḣ1 = λCdis1

[
(1− w)

1

4
J

1
2
2

(
J

3
2
2 − J3

)− 2
3 [

(Σ−Qkin)⊗ ξ1

+ξ1 ⊗ (Σ−Qkin)
]
− Cd1H1

]
, (6.26)

Ḣ2 = −λCdis2

[
(1− w)

6

(
J

3
2
2 − J3

)− 2
3 [

(ξ2 · ξ2)⊗ (Σ−Qkin)

+ (Σ−Qkin)⊗ (ξ2 · ξ2)
]

+ Cd2H2

]
. (6.27)

During material parameter calibration, it was found that the weighting pa-
rameter has to fulfill the inequality 1 − w < 0 in order to yield a mechanical
response in line with the experiments. For the admissible choice w = 2, the
model discussed in the present section is identical to that elaborated in Sec-
tion 6.1, and now Eq. (6.28) holds. In this respect, the approach based on the
weighting coefficient is more general.

Ckin := ckin, Ck :=
bkin

ckin
, Cdisi := cdisi, Cdi :=

bdisi

cdisi
, i = 1, 2. (6.28)

Remark 7 It should be emphasized that for all new models elaborated in the
present thesis, the distortional hardening part of the plastic free energy is as-
sumed as positive. However, it is negative according to Feigenbaum & Dafalias
(2007). Physically, the sign of the distortional hardening part (positive or neg-
ative) is determined by the assumption that during distortional hardening part,
the plastic free energy is stored or released. It is determined by the microstruc-
ture evolution. Accordingly, the structure of the Helmholtz energy proposed in
Feigenbaum & Dafalias (2007) is:

Ψp = Ψp
iso + Ψp

kin −Ψp
dis. (6.29)



58 Chapter 6. A new thermodynamically consistent constitutive model

However, by changing also the sign of the evolution equations defining distor-
tional, i.e.,

Ḣ1 = −λCdis1Cd1

(
− 1

4Cd1
J

1
2
2

(
J

3
2
2 − J3

)− 2
3 [

(Σ−Qkin)⊗ ξ1

+ξ1 ⊗ (Σ−Qkin)
]
−H1

)
, (6.30)

Ḣ2 = −λCdis2Cd2

(
1

6Cd2

(
J

3
2
2 − J3

)− 2
3 [

(ξ2 · ξ2)⊗ (Σ−Qkin)

+ (Σ−Qkin)⊗ (ξ2 · ξ2)
]
−H2

)
, (6.31)

both assumptions are equivalent.

Remark 8 Positively homogeneous function of degree k

∀ k ∈ R, a function f : Rn → R is positively homogeneous of degree k if

f (λx) = λkf (x) ,

for all λ > 0 and x ∈ Rn.

Remark 9 Euler’s theorem

For a function f : Rn → R which is positively homogeneous of degree k, the
identity

x · ∇f (x) = kf (x)

is fulfilled.

Remark 10 The yield function defined in the extended models, cf. Eqs. (4.12,
4.32), shows the following properties:

• J
3
2
2 − J3 is positively homogeneous of degree 3 with respect to Σ,Qkin;

• J
3
2
2 − J3 is positively homogeneous of degree 3 with respect to H1,H2;

• J
3
2
2 −J3 is positively homogeneous of degree 6 with respect to Σ,Qkin,H1,H2;
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The yield function of the new model, cf. Eq. (6.1), is based on the equivalent
stress

Σ̄e :=

(
J

3
2
2 − J3

) 1
3

.

It is positively homogeneous of degree 1 with respect to Σ,Qkin.

6.4. Variational consistency of the new plasticity model

The new model (see Section 6.1 or Section 6.3 for w = 2) does not only fulfill
the Second Law of thermodynamics, it also shows a variational structure,
cf. Mosler (2007); Mosler & Bruhns (2009, 2010); Mosler (2010). To be more
precise, the model can be rewritten as a minimization problem which naturally
defines the evolution equations. From a physics point of view, the evolution
of the internal variables can thus be interpreted as stable energy minimizers.

6.4.1. Fundamentals

In the present section, the variational structure of finite strain plasticity the-
ory is briefly discussed. It is strongly related to the framework of standard
dissipative solids. It will be shown that the potential to be minimized is the
stress power, cf. Ortiz & Stainier (1999); Carstensen et al. (2002); Mosler
(2007); Mosler & Bruhns (2009):

P(ϕ̇, Ḟ
p
, α̇,Σ,Q) = P : Ḟ = Ψ̇(ϕ̇, Ḟ

p
, α̇) +D(Ḟ

p
, α̇,Σ,Q). (6.32)

Eq. (6.32) is only valid, if the Mandel stress Σ and the internal variables
Q defining the plastic flow Lp and the strain-like variables α, respectively,
are admissible. In line with Ortiz & Stainier (1999); Carstensen et al. (2002);
Mosler (2007), this constraint can be enforced by introducing the characteristic
function of EΣ, i.e.,

J(Σ,Q) :=

 0 ∀(Σ,Q) ∈ EΣ cf. Eq. (3.8)

∞ otherwise.
(6.33)

With the definition of J(Σ,Q), the constrained problem (6.32) is reformulated
into the unconstrained counterpart

Ẽ(ϕ̇, Ḟ
p
, α̇,Σ,Q) = P(ϕ̇, Ḟ

p
, α̇,Σ,Q) + J(Σ,Q). (6.34)
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The attractive properties of functional (6.34) become apparent, if the station-
arity conditions are computed, i.e.,

δ(Σ,Q)Ẽ = 0 =⇒ (Lp, α̇) ∈ ∂J

δ(α̇)Ẽ = 0 =⇒ Q = − ∂Ψ
∂α

δ(Ḟp
)Ẽ = 0 =⇒ Σ = F eT · ∂Ψ

∂F e = 2Ce · ∂Ψ
∂Ce

(6.35)

Here, ∂J is the subdifferential of J , cf. Rockafellar (1970). According to Eqs.
(6.35), the stationarity condition of Ẽ results in the flow rule, the constitutive
relation for the internal stress-like variables Q and the constitutive relation
for the Mandel stress Σ, cf. Carstensen et al. (2002); Mosler (2007); Mosler &
Bruhns (2009).

So far, a stationarity principle equivalent to associative plasticity theory at
finite strain has been introduced. It can be shown that this principle is rep-
resented by a saddle point problem (minimization with respect to (α̇, Ḟ

p
),

maximization with respect to (Σ,Q)), cf. Mosler (2007); Mosler & Bruhns
(2009). However, as discussed in Ortiz & Stainier (1999); Carstensen et al.
(2002), it is possible to derive a reduced functional whose minimum yields the
evolution equations. For that purpose, the dual of J (the dissipation), i.e.,

J∗(L̄
p
, ˙̄α) = sup

{
Σ : L̄

p
+Q · ˙̄α|(Σ,Q) ∈ EΣ

}
(6.36)

defined by a Legendre transformation is considered. Inserting the reduced dis-
sipation Ineq. (3.6) into the stress power (6.32) and subsequently, into (6.34),
together with the Legendre transformation (6.36), yields the reduced counter-
part of Eq. (6.34)

E(ϕ̇, Ḟ
p
, α̇) = Ψ̇(ϕ̇, Ḟ

p
, α̇) + J∗(Lp, α̇). (6.37)

For admissible stress states and associative evolution equations, J∗ is the dis-
sipation, cf. Mosler (2010). It can be shown, that Eq. (6.37) represents a
natural minimization principle of finite strain plasticity theory, i.e.(

Ḟ
p
, α̇
)

= arg inf
Ḟ

p
,α̇
E
(
ϕ̇, Ḟ

p
, α̇
)
. (6.38)

Although variational principle (6.38) looks very simple, the nonlinear con-
straints imposed by the flow rule

Ḟ
p · F p−1 = λ

∂φ

∂Σ
(6.39)

increase the complexity of the minimization principle significantly. An effective
method for a priori fulfilling the respective constraints is the introduction
of so-called pseudo stresses Σ̃, cf. Mosler & Bruhns (2009); Mosler (2010);
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Mosler & Bruhns (2010). They are not necessarily identical to their physical
counterparts, i.e., Σ̃ 6= ξ := Σ − Qkin (cf. Section 6.1), but they result
in the same flow direction by definition, i.e., ∂Σφ|Σ̃ = ∂Σφ|ξ. Employing
such a parameterization, the functional dependency of the stress power is
given by E = E(ϕ̇, Σ̃, λ). Consequently, in line with Mosler & Bruhns (2009);
Mosler (2010); Mosler & Bruhns (2010), it can be shown that all unknown
state variables, together with the deformation mapping, follow jointly from
minimizing the potential E , i.e.,(

Σ̃, λ
)

= arg inf
Σ̃,λ
E
(
ϕ̇, Σ̃, λ

)
. (6.40)

6.4.2. Variational consistency of the novel model

Considering

ϕ = const. =⇒ Ḟ = 0 =⇒ Ḟ
e

= −F e ·Lp, (6.41)

the stress power can be written as

E = Ψ̇ +D

=
∂Ψ

∂F
: Ḟ + Ψ̇

∣∣
Ḟ=0

+D

= Ψ̇
∣∣
Ḟ=0

+D + P : Ḟ

= Ψ̇e
∣∣
Ḟ=0

+ Ψ̇p
∣∣
Ḟ=0

+D + P : Ḟ

= −Σ : Lp +
(

Ψ̇p
iso

∣∣
Ḟ=0

+ Ψ̇p
kin

∣∣
Ḟ=0

+ Ψ̇p
dis

∣∣
Ḟ=0

+D
)

+ P : Ḟ

= −Σ : Lp +

(
− λQiso

∂Ω

∂Qiso
− λQkin :

∂Ω

∂Qkin

− λH1 ::
∂Ω

∂H1

−λH1 ::
∂Ω

∂H1
+D

)
+ P : Ḟ

φ=0
= −Σ : Lp +

(
− λQiso

∂Ω

∂Qiso
− λQkin :

∂Ω

∂Qkin

− λHi ::
∂Ω

∂Hi

+λ

(
2 Q0 +Qiso +

bkin

ckin
Qkin : Qkin +

bdisi

cdisi
Hi :: Hi

))
+ P : Ḟ

= −Σ : Lp +

(
− λQiso

∂φ

∂Qiso
− λQkin :

∂φ

∂Qkin

− λHi ::
∂φ

∂Hi

+λ (2Q0 +Qiso)

)
+ P : Ḟ
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φ=0
= −Σ : Lp +

(
−λQiso

∂φ

∂Qiso
− λQkin :

∂φ

∂Qkin

+ λQ0

)
+ P : Ḟ

= −λΣ :
∂φ

∂Σ
+

(
−λQiso

∂φ

∂Qiso
− λQkin :

∂φ

∂Qkin

+ λQ0

)
+ P : Ḟ

= −λ

((
J

3
2
2 − J3

) 1
3

−Qiso −Q0

)
+ P : Ḟ

= −λφ+ P : Ḟ . (6.42)

Certainly, the same results could be derived by considering E = P : Ḟ and
λφ = 0. By inserting the Helmholtz energy (6.2), the definition of the stress-
like variables (3.6,6.3), together with the evolutions equations (6.8,6.9), into
Eq. (6.42) yields the stationarity condition (energy stability with respect to
the plastic multiplier)

δλE =

{
−Σ :

∂φ

∂Σ

∣∣∣
Σ̃

+Qkin :
∂φ

∂Σ

∣∣∣
Σ̃
−Qiso

∂φ

∂Qiso
+Q0

}
δλ = 0

⇐⇒ −φ = 0 (6.43)

which thus enforces the stresses to be admissible, i.e., to fulfill the constraint
induced by the yield function. Moreover, the stationarity condition with re-
spect to pseudo stress Σ̃ leads to

δΣ̃E =

{
−λΣ :

∂2φ

∂Σ2

∣∣∣
Σ̃

+ λQkin :
∂2φ

∂Σ2

∣∣∣
Σ̃

}
: δΣ̃ = 0

⇐⇒ (Σ−Qkin) :
∂2φ

∂(Σ−Qkin)2

∣∣∣
Σ̃

= 0 (6.44)

which is consistent with the flow rule, refer to Remark 11. As a result, varia-
tional principle (6.40) is indeed equivalent to the constitutive model elaborated
in Section 6.1.

Remark 11 Based on Remarks 8 to 10

Σeq (ξ) =
∂Σeq

∂ξ
: ξ.

Therefore,

Σeq =
∂Σeq

∂ξ
: ξ
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=
∂
(
∂Σeq

∂ξ
: ξ
)

∂ξ
: ξ

=

(
∂Σeq

∂ξ
+
∂2Σeq

∂ξ2 : ξ

)
: ξ

=
∂Σeq

∂ξ
: ξ +

(
∂2Σeq

∂ξ2 : ξ

)
: ξ

= Σeq +

(
∂2Σeq

∂ξ2 : ξ

)
: ξ.

As a result,(
∂2Σeq

∂ξ2 : ξ

)
: ξ = 0, =⇒ ∂2φ

∂ξ2 : ξ = 0,

which is equivalent to Eq. (6.44). Consequently, Eq. (6.44) is indeed consis-
tent with the underlying flow direction, i.e., the minimization principle (6.40)
naturally enforces the flow direction.

6.5. Numerical implementation based on the return-mapping
algorithm

The numerical implementation of the constitutive models discussed in the pre-
vious sections is elaborated here. Since all models show a similar structure, a
similar algorithm can be applied to all of them. In this connection, a nowadays
classical return-mapping algorithm is elaborated. Further details can be found
in Simo (1998); Simo & Hughes (1998).

6.5.1. Predictor / corrector algorithm - The return-mapping scheme

6.5.1.1. The predictor step

At the current loading step n + 1, a purely elastic (trial) step is defined.
This so-called trial state is determined solely in terms of the initial conditions
(F p

n,Qn) together with the current deformation measure F n+1. Certainly,
this state may not correspond to any actual, physically admissible state, cf.
Simo & Hughes (1998). Once the trial state is calculated via Tab. 6.1, the
discrete unloading condition

φtrial
n+1 ≤ 0 (6.45)
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• Trial value of the Mandel stress at current loading step n+ 1

Σtrial
n+1 := Σtrial

n+1(Cetrial

n+1 ) = Σtrial
n+1(F n+1,F

ptrial

n+1 )

with

F ptrial

n+1 := F p
n, Qtrial

n+1 := Qn.

• Trial value of the yield function

φtrial
n+1 := φtrial

n+1(Σtrial
n+1,Q

trial
n+1).

Table 6.1.: Definition of the trial state

is checked. If it is fulfilled, the trial step is admissible and thus, it represents
the solution, i.e.

F p
n+1 = F p

n,

Qn+1 = Qn,

Σn+1 = Σtrial
n+1.

(6.46)

6.5.1.2. The corrector step

Clearly, if

φtrial
n+1 > 0, (6.47)

the trial state cannot be a solution to the incremental problem. Thus, F p
n+1

and Qn+1 are not constant, but have to be updated. For that purpose, the
discretized Karush-Kuhn-Tucker conditions

∆λ > 0 and ∆λφn+1 = 0 =⇒ φn+1 = 0 (6.48)

are considered. Here, ∆λ :=
tn+1∫
tn

λ dt is the integrated plastic multiplier.

The Karush-Kuhn-Tucker condition is supplemented by the discretized flow
rule and the evolution equations. More precisely, based on the implicit back-
ward Euler time integration, the updated internal variables associated with
isotropic, kinematic and distortional hardening are given by:

Qison+1 = Q∞iso
(
1− exp[−cisoαison+1 ]

)
, (6.49)
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Qkinn+1
=

∆λckinN +Qkinn

1 + bkin∆λ
, (6.50)

H1n+1 −H1n = ∆λbdis1

(
− cdis1

4bdis1
J

1
2
2n+1

(
J

3
2
2n+1

− J3n+1

)− 2
3

[(
Σn+1 −Qkinn+1

)
⊗ ξ1n+1

+ξ1n+1
⊗
(
Σn+1 −Qkinn+1

)]
−H1n+1

)
, (6.51)

H2n+1 −H2n = ∆λbdis2

(
cdis2

6bdis2

(
J

3
2
2n+1

− J3n+1

)− 2
3

[(
ξ2n+1

· ξ2n+1

)
⊗
(
Σn+1 −Qkinn+1

)
+
(
Σn+1 −Qkinn+1

)
⊗
(
ξ2n+1

· ξ2n+1

)]
−H2n+1

)
. (6.52)

Since such a fully implicit time integration would result in a large set of un-
knowns (distortional hardening is modeled by two fourth-order tensors), the
following assumptions are made (explicit-implicit integration):

J2n+1(H1n+1 ,Σn+1,Qkinn+1
) = J2n+1(H1n ,Σn+1,Qkinn+1

), (6.53)

J3n+1(H2n+1 ,Σn+1,Qkinn+1
) = J3n+1(H2n ,Σn+1,Qkinn+1

), (6.54)

ξ1n+1
(H1n+1 ,Σn+1,Qkinn+1

) = ξ1n+1
(H1n ,Σn+1,Qkinn+1

), (6.55)

ξ2n+1
(H2n+1 ,Σn+1,Qkinn+1

) = ξ2n+1
(H2n ,Σn+1,Qkinn+1

). (6.56)

This leads to the effcient update scheme:

H1n+1 =
H1n − ∆λcdis1

4
D1

1 + bdis1∆λ
, (6.57)
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with

D1 := J
1
2
2n+1

(
J

3
2
2n+1

− J3n+1

)− 2
3
[
ξn+1 ⊗ ξ1n+1

+ ξ1n+1
⊗ ξn+1

]
. (6.58)

Similarly,

H2n+1 =
H2n + 1

6
∆λcdis2D2

1 + bdis2∆λ
, (6.59)

with

D2 :=

(
J

3
2
2n+1

− J3n+1

)− 2
3
[(
ξ2n+1

· ξ2n+1

)
⊗ξn+1+ξn+1⊗

(
ξ2n+1

· ξ2n+1

)]
.

(6.60)

Accordingly, the update of the fourth-order tensors Hi shows the same struc-
ture as the update defining kinematic hardening, compare to Eq. (6.50). Fi-
nally, the flow rule

Lp = λ
∂Ω

∂Σ
(6.61)

is approximated by means of an exponential time integration resulting in

F p
n+1 = exp [∆λNn+1] · F p

n, Nn+1 :=
∂φ

∂ξ

∣∣∣∣
n+1

. (6.62)

In order to update the state variables F p
n+1 and Qn+1, Eqs. (6.48 to 6.52,

6.62) have to be solved. In line with assumptions (6.53 to 6.56), there are two
residuals (R1 and R2) depending on the two unknown variables ∆λ and N ,

R1 := Nn+1 −
∂φ

∂Σ

∣∣∣∣
n+1

, (6.63)

R2 := φ|n+1. (6.64)

In order to solve the problem (R1;R2) = 0, the standard Newton method is
adopted. Here, the Jacobian matrix is ∂R1

∂N
∂R1
∂∆λ

∂R2
∂N

∂R2
∂∆λ

 . (6.65)
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It is based on the derivatives

∂2φ

∂Σ∂N
,

∂2φ

∂Σ∂∆λ
,

∂φ

∂N
,

∂φ

∂∆λ
. (6.66)

Focus is first on the flow direction ∂φ
∂Σ

= ∂φ
∂ξ

. A straightforward computation
gives

∂φ

∂ξ

∣∣∣∣
n+1

=
∂φ

∂J2

∣∣∣∣
n+1

∂J2

∂ξ

∣∣∣∣
n+1

+
∂φ

∂J3

∣∣∣∣
n+1

∂J3

∂ξ

∣∣∣∣
n+1

, (6.67)

with

∂J2

∂ξ

∣∣∣∣
n+1

=
∂J2

∂ξ1

∣∣∣∣
n+1

:
∂ξ1

∂ξ

∣∣∣∣
n+1

, (6.68)

and

∂ξ1ab
∂ξij

∣∣∣∣
n+1

=
∂ (H1abcdξcd)

∂ξij

∣∣∣∣
n+1

= H1n+1 abij +
∂H1n+1 abcd

∂ξij
ξcd

∣∣∣∣
n+1

. (6.69)

In order to compute the derivative of the distortional hardening tensors with
respect to the relative stresses, the assumptions (6.53 to 6.56) are applied.

Therefore,
∂H1n+1

∂ξ
simplifies to

∂H1n+1

∂ξ
= − ∆λcdis1

4 (1 + ∆λbdis1)

∂D1

∂ξ

∣∣∣∣
n+1

, (6.70)

with

∂D1

∂ξ

∣∣∣∣
n+1

=

∂

[
J

1
2
2n+1

(
J

3
2
2n+1

− J3n+1

)− 2
3

]
∂ξ︸ ︷︷ ︸

:=T 1

[
ξn+1 ⊗ ξ1n+1
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, (6.71)

where T 1 and T2 are given by:

T1ij =

[
1

2
J
− 1

2
2

(
J

3
2
2 − J3

)− 2
3

− J2

(
J

3
2
2 − J3

)− 5
3

]
sym (ξ1ab)H1abij
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+
2

3
J
− 1

2
2

(
J

3/2
2 − J3

)−5/3

[
2

3
ξ2naξ2am +

1

3
(ξ2nbξ2bm)T

]
H2mnij , (6.72)

T2abcdij = δai δbj ξ1cd + ξabH1cdij + δci δdj ξ1ab + ξcdH1abij . (6.73)

Here, δij is again the Kronecker delta. Following similar lines, ∂J3
∂ξ

is obtained,

and thus, the flow direction (6.67) is calculated.

With Eqs. (6.67 to 6.73), the Hessian (6.65) can finally be computed. The
second row of that matrix results in

∂φ

∂N
=
∂φ

∂ξ
:
∂ξ

∂N
, (6.74)

with

∂ξ

∂N
=
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∂N
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and
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. (6.76)

Regarding the first row of the Hessian matrix (6.65), a straightforward com-
putation yields

∂2φ
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=

∂2φ

∂ξ∂ξ︸ ︷︷ ︸
:=T3

:
∂ξ

∂∆λ
+

∂2φ

∂ξ∂H1
::
∂H1

∂∆λ
+

∂2φ

∂ξ∂H2
::
∂H2

∂∆λ
, (6.77)

where

T3ijmn =
∂2φ

∂J2∂ξmn

∂J2

∂ξij
+
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∂J2

∂2J2

∂ξij∂ξmn

+
∂2φ

∂J3∂ξmn

∂J3
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. (6.78)

The derivative of the flow direction with respect to the tensor N follows iden-
tical lines and is thus not presented in detail here.
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6.5.2. Tangent operator

The return-mapping algorithm is completed by the so-called algorithmic tan-
gent operator. That operator is required for an asymptotic quadratic conver-
gence of the finite element framework. In the material setting, the tangent
operator is defined as

C = 2
dS

dC
= 2

[(
∂S

∂Ce :
∂Ce

∂F p +
∂S

∂F p︸ ︷︷ ︸
=: dS

dFp

)
:

dF p

dC
+

∂S

∂Ce :
∂Ce

∂C

]
. (6.79)

Here, S and C are the second Piola-Kirchhoff stress tensor and the right
Cauchy-Green strain tensor. Considering F p as a function of N and ∆λ (see
Eq. (6.62)), dF p

dC
is further expanded as

dF p

dC
=
∂F p

∂N
:

dN

dC
+
∂F p

∂∆λ
⊗ d∆λ

dC
. (6.80)

Here, d∆λ
dC

and dN
dC

are calculated by linearizing the nonlinear system (6.63,
6.64) with respect to C (the return-mapping algorithm), i.e.,

dR1

dC
=
∂R1

∂N
:

dN

dC
+
∂R1

∂∆λ
⊗ d∆λ

dC
+
∂R1
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, (6.81)

dR2
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∂N
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+
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dC
+
∂R2
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. (6.82)

For a converged return-mapping step (|R1| → 0 and |R2| → 0), implying
dR1
dC

= 0 and dR2
dC

= 0, d∆λ
dC

and dN
dC

are obtained as
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= −
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, (6.83)

and
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. (6.84)

The remaining derivatives necessary for the algorithmic tangent (6.79) are

∂Ce
ij

∂Ckl
= F p−1

ik F
p−T
lj , (6.85)
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∂Ce
ij

∂F p
kl

= Fca Fcb

∂F p−1

ai

∂F p
kl

F p−1

bj + F p−1

ai

∂F p−1

bj

∂F p
kl

 . (6.88)

The elaborated return-mapping scheme has been implemented as user material
subroutine (UMAT) in ABAQUS R© via FORTRAN.

Remark 12 It should be mentioned that the tangent moduli required by the
ABAQUS R© solver is given by the push-forward of the material description of
the tangent operator C with respect to F , cf. Nebebe (2011).

6.5.3. The algorithm for model parameters identification

In contrast to the classical strain-driven return-mapping scheme described in
the previous sections, a slightly modified stress-driven algorithm is employed
for the calibration of the material parameters. It is sketched in Fig. 6.5. It
bears emphasis that this algorithm does not dependent explicitly on the elastic
material model, since the respective mechanical response is already included in
the prescribed stresses. Based on the Karush-Kuhn-Tucker conditions and the
flow rule, the updated plastic deformation gradient and the internal variables
are computed for a certain loading step. Subsequently, the yield surface of
that state is computed by scanning the stress space in 128 steps.
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Figure 6.5.: Algorithm for the computation of the yield surface in the Σ11−Σ22

space. nmax is the number of points on a single yield surface, Σpre

is the prescribed (upper) limit of the Mandel stress during plotting





7. Numerical example

A numerical application of the constitutive model proposed in Section 6.1
and implemented as user material subroutine in ABAQUS, see Section 6.5, is
discussed in the current chapter. This shall demonstrate the predictive capa-
bilities of the model and is used as a verification test. The model parameters
employed in the following are those which have been calibrated for AZ31 (cf.
Section 6.2 and Tab. A.2). A circumferentially notched round bar loaded under
uni-axial tension is considered.

7.1. Notched bar

The novel constitutive model implemented in UMAT/ABAQUS standard is
applied to simulate the deformation of a 3D notched bar under uniaxial ten-
sion. The FE model consists of one eighth of the solid exploiting symmetry
conditions. The dimensions are given in Fig. 7.1 (left). The geometry is
discretized by fully integrated 8-noded 3D brick finite elements, see Fig. 7.1
(middle). A uniform displacement is prescribed at the upper cross section of
the specimen. Loading is applied in the material’s RD direction. The axial
reaction force as well as the change of diameter at the notch in two perpendic-
ular directions, namely in RD and TD directions, are recorded. For the sake
of comparison, the computation is also performed by means of the classical
von Mises model without distortional hardening.

The accumulated equivalent plastic strain for a top displacement of a magni-
tude 2.5 mm is depicted in Fig. 7.2. Accordingly, strain localization at the
notch root is observed (necking). In order to study the global behaviour of the
specimen, the reaction force is evaluated as a function of the reduction of the
diameter (∆d, shown in Fig. 7.2). For anisotropic materials, the reduction of
the diameter may not be uniform and thus, the initially circular cross section
becomes an ellipsoid. This effect can be identified by the branching of the
force-∆d signal, see Fig. 7.2. In the simulation based on von Mises plasticity,
this effect is not included (with Hi simplified to the isotropic case, distortional
hardening was turned off by setting bdisi = 0).

The correctness of the implementation was checked by analyzing the conver-
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Dimensions Change of diameter Mesh

10mm

R = 5mm

5mm ND

TD

RD

dTD d0

dND

∆d = |d− d0|

Figure 7.1.: Notched round bar under uniaxial tension: geometry and finite
element mesh

gence rate. According to Tab. 7.1, the convergence is asymptotically quadratic,
as expected from the Newton scheme.

0.0

(Avg: 75%)

0.0
+6.913e−02
+1.383e−01
+2.074e−01
+2.766e−01
+3.457e−01
+4.149e−01
+4.840e−01
+5.531e−01
+6.223e−01
+6.914e−01
+7.606e−01
+8.297e−01

SDV1

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6
0

1 0

2 0

3 0

4 0

Ax
ial 

rea
ctio

n f
orc

e (
kN

)

C h a n g e  o f  d i a m e t e r           ( m m )

 c u r r e n t  m o d e l - N D
 c u r r e n t  m o d e l - T D
 v o n  M i s e s - N D  &  T D

1 . 4 8 1 . 4 9 1 . 5 0
3 5 . 2

3 5 . 4

3 5 . 6

 

 

∆d

different ∆d
in TD & ND

Figure 7.2.: Notched round bar under uniaxial tension (only the vertical dis-
placements are prescribed at the upper surface): contour of equiv-
alent plastic strain for a top displacement of 2.5mm and load-
displacement diagram
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Convergence of the return-mapping scheme: Convergence of the finite
element residual for a plastic deformation

Iteration 1 2 3

Residual 1.78·10−1 -7.61·10−2 1.05·10−5

Table 7.1.: Convergence of the FEM model





8. Conclusions and outlook

In the present thesis, different macroscopic phenomenological constitutive mod-
els suitable for describing the distortion of the yield function due to texture
evolution in polycrystals have been presented. Focus was on the mechanical
response of magnesium alloys. Among the existing models, one proposed by
Teodosiu and co-workers, one advocated by Levkovitch & Svendsen and one
introduced by Feigenbaum & Dafalias were analyzed in detail. It was found
that cross hardening and the distortion of the yield function is captured in all
the models by an evolving fourth-order tensor governed by a differential equa-
tion similar to the one of by now classical Armstrong-Frederick rule. Within
the Teodosiu and the Levkovitch & Svendsen models, this evolution equation
is decomposed into a part related to currently active slip systems and an addi-
tional part that corresponding to latent slip systems. Furthermore, Teodosiu
and co-workers focused on the effects of work hardening stagnation, soften-
ing and resumption and do not account for a distortion of the yield surface.
For a better comparison, all models were reformulated and implemented into
the modern frame of hyperelastoplasticity, and a yield function in terms of
the Mandel stress was chosen in order to guarantee thermodynamical consis-
tency of the elastic processes at finite strain and material frame indifference.
Since the original models do not account for the strength differential effect as
observed in magnesium alloys, respective extensions were discussed and sub-
sequently implemented. For these extended models, it was shown that only
the extended Feigenbaum & Dafalias model can fulfill the Second Law of ther-
modynamics by enforcing an additional non-linear inequality. However, that
model predicts a high curvature of the yield function in the loading direction,
while the opposite region of the yield function is rather flat. Since such a re-
sponse is not observed for most magnesium alloys, a novel constitutive model
was introduced. The crucial idea was to model distortional hardening similarly
to kinematic hardening by an Armstrong-Frederick-type equation obtained
from a convex plastic potential, i.e., to apply the framework of generalized
standard materials. This procedure automatically guaranteed thermodynam-
ical consistency of the resulting model, independent of the chosen material
parameters and for arbitrary loading paths. The predictive capabilities of the
final model were eventually demonstrated by comparisons to experimentally
measured data. With calibrated material parameters, the final model was
implemented in UMAT/ABAQUS standard via a semi-implicit integration al-
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gorithm. Numerical examples demonstrated the predictive capabilities of the
resulting model.

Although the novel model proposed within the present thesis was both ther-
modynamically and variationally sound, several further improvements of the
constitutive laws are still needed. Firstly, further experiments are required for
a more accurate calibration of the material parameters, particularly experi-
ments showing non-radial and non-proportional loading paths. Secondly, the
relationship between the variables defined at the macroscale and the underly-
ing processes at the microstructure has to be further strengthened. That is of
utmost importance for understanding processing-material-properties relation-
ships.



A. Model parameters calibrated for AZ31

H1 =



6.70 −8.58 1.87 0 0 0

−8.58 3.19 5.38 0 0 0

1.87 5.38 −7.26 0 0 0

0 0 0 −14.05 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(A.1)

H2 =



−5.77 −0.78 6.56 0 0 0

−0.78 2.49 −1.71 0 0 0

6.56 −1.71 −4.85 0 0 0

0 0 0 −3.02 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(A.2)

Table A.1.: Initial anisotropy of the yield surface - Matrix representations Hi
of the tensors Hi, compare to Mekonen et al. (2012), cf. Subsection
5.3.2, Section 6.2, Figs. 5.11, 6.1. Since the Mandel stress is
symmetric (isotropic elastic response), Hi can be represented by
6× 6 matrices.
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80 Appendix A. Model parameters calibrated for AZ31

The extended Teodosiu model - Subsection 4.1.2

Q0 (MPa) ciso Q∞iso (MPa) ckin

124.78 107416.15 95.55 -6528.50

Q
(0)
kin (MPa) Â B̂ f (MPa)

1546.72 1.41 · 10−2 −1.17 · 10−2 0.57

The extended Levkovitch & Svendsen model - Subsection 4.2.2

Q∞iso (MPa) ciso Q∞kin (MPa) ckin

96.09 155764.85 1019.76 101.20

sD1 cD1 sL1 cL1 sD2 cD2 sL2 cL2

948.10 -0.014 1029.27 -0.0033 1746.09 0.99 987.01 1.10

The extended Feigenbaum & Dafalias model - Subsection 4.3.2

Q0 (MPa) κ1 κ2 (MPa−1) a1 a2 (MPa−1)

115.47 2.975 · 108 9.37 · 10−4 102437.7 0.0015

A11 (MPa−4) A21 (MPa2) A12 (MPa−4) A22 (MPa2)

0.826 2029.1 -0.00003 1995.3

New constitutive model - Chapter 6

Q0 (MPa) Q∞iso (MPa) ciso bkin ckin (MPa)

611.90 798.16 288.05 171.53 521.89

bdis1 cdis1 (MPa−1) bdis2 cdis2 (MPa−1)

0.001869 0.774 0.003482 2.094

Table A.2.: Model parameters for the magnesium alloy AZ31. The elasticity
constants are E = 45000 (MPa) and ν = 0.35.
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