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Abstract

The present thesis is concerned with the analysis of micromechanical defor-
mation systems of single crystal magnesium. For this purpose, a variationally
consistent approach based on energy minimization is proposed. It is suitable
for the modeling of crystal plasticity at finite strains including phase transition
associated with deformation-induced twinning. The method relies strongly on
the variational structure of crystal plasticity theory, i.e., an incremental mini-
mization principle can be derived which allows to determine the unknown slip
rates by computing the stationary conditions of a pseudo-potential. Phase
transition associated with twinning is modeled in a similar fashion. More pre-
cisely, a solid-solid phase transition corresponding to twinning is assumed, if
this is energetically favorable. Accordingly, two models for twinning phase
transition are proposed. Within the first model, twinning phase transition
is approximated by means of a pseudo-dislocation. The deformation induced
by twinning is decomposed into the reorientation of the crystal lattice and
pure shear strain. The latter is assumed to be governed by means of a stan-
dard Schmid-type plasticity law, while the reorientation of the crystal lattice
is applied when the part of the Helmholtz energy characterizing the pseudo-
dislocation system reaches a certain threshold value. Furthermore, a novel
and more physically realistic model is developed by which the microstructure
of twinning (twinning lamellas) and the related plastic shear strain are ob-
tained from relaxing a certain energy potential. This local model is based
on the sequential lamination of the deformation field. Moreover, a size effect
is accounted for by considering the twinning interface energy. The proposed
models are calibrated for single crystal magnesium by means of the channel
die test. Comparisons of the predicted numerical results to their experimental
counterparts show that the novel models are able to capture the characteristic
mechanical response of magnesium very well.
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Kurzfassung

Das Ziel der vorliegenden Arbeit ist die mikromechanische Beschreibung von
Magnesium. Hierzu werden verschiedene variationell konsistente Ansätze basie-
rend auf Energieprinzipien vorgeschlagen. Beide dieser Ansätze beschreiben
Versetzungen mittels der Kristallplastizität. Im Gegensatz dazu unterscheiden
sich die Methoden bezüglich der Modellierung verformungsinduzierter Zwill-
ingsbildung signifikant. Im Rahmen des ersten Modells wird die Deformation,
welche zu einer Zwillingsbildung korrespondiert, in der ersten Phase durch
eine Scherdeformation und in der zweiten Phase durch eine Reorientierung
des Kristallgitters zerlegt. Im Gegensatz hierzu werden beide Mechanismen
(Scherdeformation und Reorientierung des Kristallgitters) im zweiten Ansatz
simultan betrachtet. Darüber hinaus erlaubt das zweite erweiterte Modell,
die Mikrostruktur vorherzusagen, welche mit der Zwillingsbildung einhergeht
(z.B. die Dicke der Lamellen). Dadurch ist es möglich, einen Größeneffekt vom
Typ Hall-Petch konsistent in das Modell zu integrieren.
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1 Introduction

During the early years of the twenty-first century, the efficiency of energy con-
sumption has become more important than ever before, given the demand for
energy has been increased tremendously. While renewable sources of energy
are under investigation, advances in the structural design and materials make it
possible to spend less energy for the same duty. Particularly, in transportation
industries, e.g. urban transportation, aerospace and street vehicles, the appli-
cation of lighter and more durable materials becomes highlighted. Aluminum,
titanium and magnesium have been successfully used in aerospace industries.
However, the fact that these materials have been considered being expensive
has tended to obscure their importance in car production industries. The cost
of production is a relative value and hence, the increase in price of energy
and a simultaneous reduction in the cost of massive production of magnesium
(compared to polymer based composites) make it a prospective candidate to
be extensively used in modern cars.

Magnesium challenges aluminum with regard to the relative strength. How-
ever, since the discovery of the magnesium element, it was observed that pure
magnesium bears a significant chemical potential. For instance, at room tem-
perature it reacts easily with oxygen and hence its applications have been lim-
ited to non-engineering structures, e.g. the traditional magnesium fire starter.
In sharp contrast to the chemical properties, the physical properties of mag-
nesium are favorable for alloying purpose. Zinc, zirconium, cerium, silver and
aluminum are widely used to stabilize and enhance the chemical and mechani-
cal properties of magnesium alloys. Though die cast and sand cast magnesium
products satisfy their service requirements, wrought products such as extruded
profiles and rolled sheets are also necessary in car production.

The application of wrought magnesium alloys necessitates a comprehensive
knowledge about the behavior of such materials during forming processes and
their final performance under service load. While the former process is asso-
ciated with plastic properties, the latter is usually related to reversible elastic
deformation. Most of such processes are also visible in pure magnesium. Since
this is a less complicated material system, it will be considered in what fol-
lows. The material response of single crystal magnesium, in turn, is directly
originated from micro-scale phenomena where a complex set of deformation
systems governs the overall macro-scale plastic deformation. In general, dislo-
cation slip and deformation-induced twinning contribute to plastic deformation
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2 Chapter 1. Introduction

in magnesium. Unlike traditional aluminum alloys and a wide variety of steels,
both mechanisms can have a significant influence on the overall plastic defor-
mation. Most of currently available and frequently used models for irreversible
deformations in metals deal with either dislocation slip or deformation-induced
twinning. In the present work, novel numerical models are proposed such that
both deformation mechanisms are unified in one integrated approach. One
advantage of such kind of model is that the instantaneous hardening transi-
tion in magnesium can be described. Moreover, while the robustness of the
proposed model is taken as a key parameter, the thermodynamical consistency
is assured by using a variational energy minimization method. Moreover, the
twinning microstructure is analyzed – particularly, the evolution of twinning
lamellas.

1.1 State of the art

1.1.1 Experimental observations

In contrast to aluminum with face-centered cubic (FCC) crystal structure and
iron with body-centered cubic (BCC) structure, the HCP crystal structure
of magnesium has a reduced number of energetically favorable dislocation
systems. More precisely, considering a reference lattice axial ratio of c/a =
1.633, magnesium with c/a=1.624 falls into the so-called transition class, re-
fer to Christian & Mahajan (1995). The small difference to the reference
lattice results in a complex mechanical interplay between dislocation slip and
deformation-induced twinning. This has been observed in several experiments,
see Hauser et al. (1955); Reed-Hill & Robertson (1957b); Yoshinaga & Horiuchi
(1963); Tegart (1964); Wonsiewicz & Backofen (1967); Roberts & Partridge
(1966); Obara et al. (1973) and Ando & Tonda (2000).

Although some of the characteristic deformation modes in single crystal mag-
nesium are reasonably well understood such that the basal systems 〈112̄0〉{0001}
(Miller-Bravais indexing system for HCP lattices) and the prismatic systems
〈112̄0〉{1̄100} are mostly responsible for plastic deformation, many questions
are still open and controversially discussed in the literature. For instance,
although it is commonly accepted that twinning is activated in single crystal
magnesium at the planes {1̄012} under tensile loading in 〈101̄1〉 direction, not
much is known about the opposite loading direction. According to Wonsiewicz
& Backofen (1967), twinning has been observed in this case as well. However,
pyramidal slip on the system 〈112̄3〉{112̄2} has also been frequently reported,
see Obara et al. (1973); Lilleodden (2010).

While only little information is available about the qualitative mechanical re-
sponse, even less is known about the quantitative behavior of single crystal
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magnesium. One effective way to get some further insight is provided by the
so-called channel die test, see Wonsiewicz & Backofen (1967); Kelley & Hos-
ford (1968) (cf. Sue & Havner (1984)). By using different crystal orientations
within that test, classes of specific deformation systems can be enforced al-
lowing to compute the respective hardening behavior (resolved shear stress vs.
strain). However, except for rather simple deformation modes showing only
a small number of active slip systems, significant further research is still re-
quired. For instance, it is completely unknown for complex loading conditions,
whether the twinned domain inherits dislocations corresponding to the initial
phase, or if only a certain part of them is transformed.

1.1.2 Numerical models

An effective constitutive framework suitable for the modeling of dislocation
slip was presented in the pioneering works Hill (1966); Rice (1971); Asaro &
Rice (1977): crystal plasticity theory. In the late 90s, a variationally consistent
reformulation of that theory was elaborated in Ortiz & Repetto (1999) (see
also Carstensen et al. (2002); Miehe & Lambrecht (2003); Mosler & Bruhns
(2009b)). This thermodynamically sound approach represents the foundation
for the novel model which is discussed in the present thesis. In contrast to con-
ventional plasticity-like models, the approach advocated in Ortiz & Repetto
(1999) allows to compute unknown dislocation slip rates by minimizing a cer-
tain energy functional. Considering rate-independent problems, this potential
turns out to be the stress power. In addition to its physical and mathemati-
cal elegance, the model proposed in Ortiz & Repetto (1999) shows also some
numerical advantages. For instance, the determination of the set of active slip
systems (see Peirce et al. (1982)) is naturally included within the aforemen-
tioned optimization problem and thus, a visco-plastic-type relaxation such as
utilized in Asaro (1983); Asaro & Needleman (1985) or other sophisticated reg-
ularization techniques similar to those in Schmidt-Baldassari (2003); McGinty
& McDowell (2006); Zamiri et al. (2007); Graff et al. (2007) can often be
avoided.

Nowadays, a large number of (local) crystal plasticity theories suitable for
the analysis of dislocation slip can be found in the literature. The reader is
referred to Roters et al. (2010) for a recent overview. The opposite is true
for the modeling of deformation-induced twinning and the coupling of the
aforementioned deformation modes. Early attempts to combine twinning with
dislocation slip were based on the concept of pseudo-dislocation (also referred
to as PD-twinning), see e.g. Chin (1975) and references cited therein. Con-
ceptually, only the plastic shear strain caused by twinning has been accounted
within such approaches.
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First ideas related to the modeling of the reorientation of the crystal lattice due
to deformation-induced twinning were addressed in Van Houtte (1978). Phys-
ically more sound descriptions of twinning as a kind of phase transformation
can be credited to the work Ericksen (1979). Therein, phase transformation is
modeled by means of the theory of invariance groups of atomic lattices and the
energy associated with their distortion, cf. Rajagopal & Srinivasa (1995). An
elegant approximation of the kinematics associated with twinning goes back
to James (1981), where Hadamard-like compatibility conditions were derived,
see also Pitteri (1985); Ball & James (1987). According to James (1981), the
deformation shows a weak discontinuity (discontinuous strain field) at the twin
symmetry plane. More precisely, the deformation gradients on both sides of
that plane differ from one another by a rank-one second-order tensor, cf. James
(1981). As a consequence, twinning can be considered as a certain rank-one
convexification (Ortiz & Repetto, 1999; Carstensen et al., 2002). This frame-
work is nowadays well established for mechanical problems involving phase
transformation. A typical example is the martensitic phase transformation
occurring in shape memory alloys (Ball & James, 1987; Simha, 1997; Mueller,
1999; Idesman et al., 2000; James & Hane, 2000; Mielke et al., 2002). In
these works, the aforementioned transition is modeled by means of a rank-one
convexification. Physically speaking, phase decomposition occurs within the
cited models, if this is energetically favorable. Preliminary ideas to translate
the underlying ideas into the modeling of deformation-induced twinning can
be found in Kochmann & Le (2009).

1.2 Scope of the thesis

Within the present thesis, a thermodynamically consistent model suitable for
the analysis of the fully coupled problem of dislocation slip and twinning
is advocated. Though the discussed framework can be applied to a broad
range of different materials, the focus is on magnesium. In line with Or-
tiz & Repetto (1999) and Kochmann & Le (2009), the proposed approach
is based on energy minimization, i.e., that particular combination between
deformation-induced twinning and dislocation slip is chosen which minimizes
the stress power. However, and in sharp contrast to Kochmann & Le (2009),
a fully three-dimensional setting and a geometrically exact description (fi-
nite strains) is considered. Furthermore, all slip systems important for the
mechanical description of single crystal magnesium are taken into account.
For the modeling of the phase transition associated with twinning, a novel
approximation is discussed. Starting with a numerically very expensive rank-
one convexification similar to those adopted in Ball & James (1987); Simha
(1997); Mueller (1999); Idesman et al. (2000); James & Hane (2000); Mielke
et al. (2002), the deformation induced by twinning is decomposed into a re-
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orientation of the crystal lattice and pure shear. The latter is assumed to
be governed by a standard Schmid-type plasticity law (pseudo-dislocation),
while the reorientation of the crystal lattice is considered, when the respective
plastic shear strain reaches a certain threshold value, cf. Staroselsky & Anand
(2003). The underlying idea is in line with experimental observations where
dislocation slip within the twinned domain is most frequently seen, if the twin
laminate reaches a critical volume. It will be shown that the resulting model
predicts a stress-strain response in good agreement with that of a rank-one
convexification method, while showing the same numerical efficiency as a clas-
sical Taylor-type approximation. Consequently, it combines the advantages
of both limiting cases. The model is calibrated for single crystal magnesium
by means of the channel die test. Moreover, using a viscos approximation
of the variational rate-independent crystal plasticity model within finite el-
ement framework, the deformation behavior and the texture evolution in a
polycrystal is analyzed.

The versatility of the variational model allows to study the twinning mi-
crostructure further. In this line, the twinning microstructure is modeled based
on the theory of sequential lamination. Since the physics of twinning deforma-
tion differs from dislocation slip, the traditional multiplicative decomposition
of deformation does not seem to be the proper choice anymore. Accordingly,
the kinematics of twinning will be described by an enhanced multiple multi-
plicative decomposition of the total deformation gradient. The combination of
the variational model, relaxation theory and multiple multiplicative decompo-
sition of deformation leads to a robust material model suitable for analyzing
the twinning deformation, not only for magnesium alloys, but also for wider
range of materials experiencing diffusion-less phase transitions. The evolution
of the twinning microstructure is also investigated by considering the twin-
ning interface energy and the energy associated with the configuration misfit
of the twinning lamellas. In this regard, minimizing the stress power leads
to the characterization of the energetically most favorable twinning laminate
microstructure.

1.3 Structure of the thesis

In order to get insight into the physics of the problem, Chapter 2 is devoted to
a brief introduction to lattice defects and deformation mechanisms responsible
for irreversible deformation of metallic materials. The mathematical descrip-
tion of deformation is given in Chapter 3 including a concise review of thermo-
dynamic laws which assemble the backbone of the proposed variational model.
Based on these physical fundaments, constitutive theories are given in Chapter
4. The existence and uniqueness of the solution of the resulting variational
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minimization problem are discussed separately in Chapter 5. It is shown that
these conditions are directly related to convexity of the respective energy func-
tional. It will be shown that one definition of convexity (rank-one convexity) is
closely related to microstructures observed in ductile crystals such as those in
copper and magnesium. Based on energy minimization this microstructure de-
pending on the twinning interface energy will be analyzed in Chapter 6. It will
be also shown in this chapter that a certain type of interface energy enforces
an instantaneous phase transition. By combining a suitable interface energy
with the concept of pseudo-dislocation, twinning transformation is modeled
in an efficient manner. The numerical implementation of this model, together
with its variational re-formulation, are also discussed in Chapter 6. Chapter 7
addresses the numerical procedure of the calibration of the respective material
parameters based on experimentally obtained results of the channel die test
of single crystal magnesium. Using the calibrated material parameters the
deformation behavior and the texture evolution of a polycrystal is analyzed
within a finite element framework in Chapter 8. The energy relaxation model
described in Chapter 6 is further developed in Chapter 9 where it is shown that
the twinning microstructure can be mathematically interpreted as sequential
laminates. Based on this interpretation the evolution of microstructures asso-
ciated with deformation-induced twinning can be analyzed in a more detailed
way. Particularly, the thickness of twinning laminates can be predicted.



2 Fundamental mechanisms of micro-scale
deformation

All substances are made of discrete units (atoms). Based on the electromag-
netic properties of atoms, they pack together in different arrangements. At the
macro-scale, the physical state of a material (gas, liquid, solid or meta-phase)
and their properties depend on these arrangements. Molecular materials can
constitute rather complex microstructures. However, at the macro-scale, all
properties are averaged and they can be classified as those with individual
atoms.

Metallic materials constitute a subgroup of solid state materials. With the
advent of the x-ray technique, the visualization of atomic structures revealed
the origin of symmetric properties of metallic materials. It turned out that
the macro-scale structure of solid metals is an array of unit cells repeating
periodically in three dimensions. The common unit cells in metallic materials
are cubic and hexagonal, see Fig. 2.1.

HCPFCCSC BCC

Figure 2.1: Commonly observed crystal unit cells of metallic materials. SC:
simple cubic, BCC: body-centered cubic, FCC: face-centered cubic, HCP:
hexagonal close-packed

2.1 Point defects

It has been observed that ordered crystalline materials, particularly metals,
inherently possess imperfections, often referred to as crystalline defects. A

7
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basic defect is an atomic vacancy wherein an atom is missing from one of the
lattice sites. Vacancies occur naturally in all crystalline materials. At any
given temperature up to the melting point, there is an equilibrium concentra-
tion of vacancy sites, see Siegel (1978); Ashby et al. (2009). Other types of
point defect are known as interstitial atoms, substitutional atoms and Frenkel-
pairs. The motion of a point defect is a diffusion process and depends on the
temperature. Except at temperatures close to the melting point and very
low strain rates, point defects merely contribute to large plastic deformations.
However, a typical counterexample is creep at high temperature in which both
conditions are likely drawn together.

2.2 Line defects: dislocations

The observation of formability of metallic materials, e.g. copper, at room
temperature raises the fundamental question about the mechanisms of their
irreversible deformations. Theoretical calculations for perfect crystals approx-
imate the yield stress (σyield), i.e., the stress level at which non-reversible
deformation starts, about one-sixth of the elastic shear modulus

σyield =
µ

2π
, (2.1)

where µ is the elastic shear modulus, see Dieter (1986); Perez (2004) and
literature cited therein. However, experimental measurements show that the
range of error obtained using Eq. (2.1) is from hundred to thousand percent,
cf. Schmid (1924); Zupan & Hemker (2003); Yu & Spaepen (2004). This
problem was open until the answer was given by a series of mathematical
studies on bounded strains in isotropic continua which gives anticipation of
topological defects at a larger scale than point defects, see Weingarten (1901);
Timpe (1905); Volterra (1907); Ghosh (1926). The observation of traces of slip
bands on the surface of deformed metals augments the idea of having planar
distortions within the crystal lattice (dislocations). Fig. 2.2 (I) depicts the
topology of an edge dislocation. Under the action of a shear stress the total
energy of the lattice increases due to stretching. The dislocation moves in
favor of the relaxation of the lattice energy, Fig. 2.2 (II). That means a series
of jogging motions translates the extra plane to the right side of the crystal
(Fig. 2.2 (III)). This leads to a step on the crystal’s surface which is visible
by high resolution atomic force microscopy (AFM). The length of the step is
characterized by the so-called Burgers vector and depends on the lattice size
parameters. After several planes reach the surface, they accumulate and form
a bigger step (slip band) which is visible even by the naked eye.

Dislocations also appear in screw form. The atomistic configuration of the
screw dislocation differs from an edge dislocation and it is even more complex
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in the case of a mixed dislocation (dislocation loop). However, their definition
can be unified at continuum-scale.

II)I) III)

b

Figure 2.2: Schematic representation of an edge dislocation moving under the
action of shear stress in SC

2.2.1 A continuum-scale approach to dislocation

The first continuum-scale approximation of the constitutive behavior of dis-
locations was developed by Schmid (1924); Taylor (1934); Orowan (1934);
Polanyi (1934). In this approach, a dislocation is characterized by two orthog-
onal unit vectors, s and m (Fig. 2.3). Here, s denotes the Burgers vector and
m is the normal vector of the glide plain. Based on the empirical Schmid’s

x3

x1

x2

x3

x2

x1

σ33

σ13
σ23

σ31

σ11

σ21

σ32

σ12
σ22

m = (m1,m2,m3)

s = (s1, s2, s3)

Figure 2.3: Geometrical relation between the characteristic dislocation vectors
and the components of the Cauchy stress tensor in the deformed configuration

law, dislocation slip occurs if the resolved shear stress (σRSS) on a dislocation
system reaches a critical value (σCRSS). According to Fig. 2.3, the general
form of Schmid’s law is written as

σRSS = σ : N =

0@σ11 σ21 σ31

σ12 σ22 σ32

σ13 σ23 σ33

1A :

0@s1m1 s1m2 s1m3

s2m1 s2m2 s2m3

s3m1 s3m2 s3m3

1A , (2.2)
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where σ is the Cauchy stress tensor and (:) indicates the Frobenius inner
product. N := (s⊗m) is also called Schmid’s tensor.

Instead of dealing with an individual dislocation, it is assumed that a dislo-
cation source continuously produces dislocations of the type {s;m} with a
constant rate of generation (ṅd) at the continuum-scale. One such dislocation
source is that proposed in Frank & Read (1950). It has been also observed
that at room temperature, plastic shear is almost rate-independent, i.e.,

dṅd

dσ̇RSS
= 0. (2.3)

More detailed information about the kinematics of dislocation slip will be given
in Section 4.2.

2.2.2 Dislocation hardening

Though almost at any temperature a constant rate of dislocation generation
has been observed, the critical resolved shear stress (σCRSS) depends on the
number of dislocations or, more precisely, on the dislocation density. If dislo-
cations are not inhibited, the rate of generation and motion remains constant
(perfect plasticity). However, this is an ideal assumption and the material
body is bounded in certain domains, e.g. grains enclosed by grain boundaries.
Furthermore, this body comprises several types of dislocation barriers.

The presence of barriers such as dislocation locks, jogs, precipitated particles,
twinning, grain boundaries etc., is one of the major sources for dislocation
pile-ups. The direct consequence of dislocation pile-ups is a reduction of the
generation rate (ṅd) at the dislocation source. This occurs because the com-
pression stress field of dislocation pile-ups reduces the effective applied force
on the new-born dislocation at the source position. The result is an increase in
slope of stress vs. strain digram in a strain-controlled experiment. This effect
is traditionally referred to dislocation hardening. In fact the input energy is
stored in the dislocation microstructure at the micro-scale.

In Sections 2.2.2.1 and 2.2.2.2 illustrative examples are given in order to high-
light the concept of dislocation hardening and stored energy. Comprehensive
studies including examples of precise analyses of the interaction among dislo-
cation stress fields and barriers can be found in Peach & Köhler (1950); Hirth
& Lothe (1982); Argon (2007).

2.2.2.1 1D illustrative example I: dislocation slip - ideal plasticity

Assume a strain-controlled shear test on a sample with unit volume including
a Frank-Read source, Fig. 2.4 (A). The internal state of the sample can be
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determined solely by the number of dislocations generated by Frank-Read
source. In the elastic regime, Fig. 2.4 (A-B), the applied shear stress tends to
bend the initial dislocation. Due to the dislocation’s curvature, the response
is naturally nonlinear. However, the stress-strain response is piece-wise linear.
The applied stress raises until it reaches the critical threshold (σCRSS) at
point (B) in Fig. 2.4. This threshold is considered to be the stress at which
the source starts to generate dislocations continuously. It can be shown that
the following relation holds:

σCRSS =
2µb

w
, (2.4)
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Figure 2.4: Schematic illustration of ideal plasticity resulting from a generation
of dislocations by Frank-Read source and annihilation on the surface under the
action of shear stress

where b and w are the norm of the Burgers vector and the width of Frank-
Read source, respectively, see Peach & Köhler (1950); Hirth & Lothe (1982);
Argon (2007). Dislocations pass throughout the sample and reach the surface.
The free surface acts as a dislocation sink (annihilation processes), cf. Sec-
tion 2.2. During the generation and annihilation of dislocations, the applied
macro-scale shear stress does not increase beyond σCRSS. The reason is that
the free surface annihilates mobile dislocations soon after their generation at
the source position, Fig 2.4 (B-C). This results in the presence of dislocation
steps on the surface and finally a macroscopic plastic shear. If the considered



12 Chapter 2. Fundamental mechanisms of micro-scale deformation

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

������������������
������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������
������������������

��

�
�
�
�

��

�
�
�
�

����

A

B

C

D

E

σCRSS

t = ∆tt = 0

σCRSS + ∆σ

∆εe

σ

ε

∆εp

w

Figure 2.5: Schematic illustration of linear dislocation hardening and the stress
resulting from a dislocation pile-up

sample is unloaded (Fig 2.4 (C-D)), the microstructure returns to its original
configuration, Fig 2.4 (D).

The sole difference between the final configuration (Fig 2.4 (D)) and its initial
counterpart at (Fig 2.4 (A)) is the external geometry. If this sample is reloaded
at t > ∆t, it follows the elastic path (Fig 2.4 (D-C)) until the stress reaches
σCRSS. Thereafter, the generation and annihilation continue in the same way
as before unloading, Fig 2.4 (B-C). Within the time interval t = [0,∆t] the
input energy is not fully stored in the sample but dissipated by exchange of
the thermal energy on the material boundary (free surfaces).

2.2.2.2 1D illustrative example II: linear dislocation hardening

Consider a sample similar to the one explained in Section 2.2.2.1, but including
a particle in a distance larger than w from the source. This particle acts as a
dislocation barrier, see Fig. 2.5(A). It is assumed that the initial particle does
not induce a long range stress field. Thus, the Frank-Read source becomes
active, if the shear stress reaches σCRSS. It implies that the elastic deformation
is similar to the previous example.
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In contrast to the example given in Section 2.2.2.1, a portion of dislocation
will be trapped around the barrier, see Peach & Köhler (1950); Hirth & Lothe
(1982); Argon (2007). The trapped dislocations induce a repulsive interaction
force on the dislocation at the source position and in opposite direction to
the applied force. Consequently, to keep the Frank-Read source generating
dislocations, the applied force (indirectly the resolved shear stress) increases,
see Fig. 2.5(B-C). After unloading, the trapped dislocations are kept as a
residual dislocation microstructure, (Fig. 2.5(D)). Upon reloading (Fig. 2.5(E-
C)), the activation of the dislocation source requires a higher stress (σCRSS +
∆σ) at Fig. 2.5(C). Briefly, the history of deformation is kept in the form of
trapped dislocations.

Remark 1 The hardening mechanism explained in Section 2.2.2.2 is com-
monly referred to the self hardening mechanism. By way of contrast, disloca-
tion slip on non-planar systems results in the so-called latent hardening.

2.3 Twinning

If an adequate number of dislocations is not available in metallic materials with
a low symmetric crystalline structure (BCC and HCP), mechanical twinning
has been identified to be an important deformation mechanism, see Christian
& Mahajan (1995) and literature cited therein. If the shear stress on a certain
atomistic plane (the so called twinning habit plane) reaches a threshold, atoms
at one side of the habit plane move to a new position. The motion is parallel
to the habit plane and the displacement is proportional to the normal distance
to the habit plane, Fig. 2.6. Since the atomistic displacement is nearly homo-

Figure 2.6: Classical illustration of the motion of a twinning interface under
the action of shear stress

geneous, both sides of the twinning plane have the same crystal structure but
bear different orientations.
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2.3.1 Twinning invariants

Each twinning mode is identified by the invariant shear plane and shear di-
rection. Consider the parallelepiped p1 in Fig. 2.7, which is transformed by
simple shear to p2, see Fig. 2.6. Crystallographic elements of twinning are de-
scribed as follows. In Fig. 2.7, κ1 indicates the invariant plane of shear and the
shear direction is represented by η1. During twinning, the atomistic plane κ2

remains undistorted. The plane of shear (s) which contains the shear vector
η1, is normal to both invariant and conjugate planes. The intersection be-
tween s and κ2 identifies the conjugate shear direction, denoted as η2. Based
on this notation, Tab. 2.1 summarizes the commonly observed twinning sys-
tems in HCP metals. Note that the Miller-Bravais indexing system is adopted.
Moreover, Tab. 2.1 includes the amplitude of the twinning shear strain λTwin,
which depends on the crystal axial ration r = (c/a), see Christian & Mahajan
(1995).

η2 λTwinl

κ 2

l

η1

κ1

p2
p1

s

Figure 2.7: Crystallographic elements of twinning, cf. Christian & Mahajan
(1995)

Table 2.1: Commonly observed twinning invariants in HCP metals, cf. Yoo
(1981)

κ1 κ2 η1 η2 λTwin

{101̄2} {101̄2̄} ±〈101̄1̄〉 ±〈101̄1〉 |r2−3|
r
√

3

{101̄1} {101̄3̄} 〈101̄2̄〉 〈303̄2〉 4r2−9

4r
√

3

{112̄2} {112̄4̄} 1
3
〈112̄3̄〉 1

3
〈224̄3〉 2(r2−2)

3r

{112̄1} {0002} 1
3
〈1̄1̄26〉 1

3
〈112〉 1

r
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2.3.2 Mechanism of twinning

2.3.2.1 Initiation

There is controversial debate about the nucleation of twinning lamellas under
the action of the applied stress in magnesium. Generally, two main types of nu-
cleation mechanisms for HCP metals have been proposed in the literature, see
Orowan (1954); Bell & Cahn (1957); Price (1960); Mendelson (1970); Hirth
& Lothe (1982); Yoo et al. (2002). The first one is based on experimental
measurements using dislocation-free Zn whiskers, which suggests a homoge-
neous twinning nucleation, see Orowan (1954); Price (1960). However, it has
been also observed that in larger Zn specimens, the nucleation of twinning oc-
curs after the formation of dislocation pile-ups. In these samples, the second
mechanism (heterogeneous nucleation) has been observed at locations of stress
concentration zones and stacking faults, see Bell & Cahn (1957); Mendelson
(1970); Yoo (1981); Hirth & Lothe (1982).

In spite of the conflict about the aforementioned different mechanisms of twin-
ning nucleation, the respective theories agree that the activation of a particular
twinning system follows the critical resolved shear stress law (Schmid’s law).
By virtue of Eq. (2.2) and using the characteristic vectors of twinning invari-
ants (the normal to (κ) and (η)), the resolved shear stress can be calculated
in the same fashion as for a dislocation system. However, the size and the
preparation method as well as the deformation history of the respective sam-
ple affect the critical value significantly, see Yoo (1981); Hirth & Lothe (1982);
Szczerba et al. (2004); Yu et al. (2009).

2.3.2.2 Propagation

At the atomistic-scale, there are two possible mechanisms by which a particular
material volume element can be transformed from the initial configuration into
the twinning configuration:

1. Translating all atoms of a complete layer from the initial phase to the

Figure 2.8: A model for the growth of a twinning lenticular, cf. Christian &
Mahajan (1995)
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Figure 2.9: Schematic diagram representing the correlation between the stress
vs. strain diagram and a twinning transformation, A) The parallelepiped
represents the initial variant, B) moving zonal dislocations under the action
of applied stresses, C) second unstressed crystal variant, D) moving zonal
dislocations under reverse loading
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twinning phase (Fig. 2.6),

2. Dislocation loops on the twinning boundary (the so-called zonal dislo-
cations) transform the initial configuration into the twinning phase, see
Hirth & Lothe (1982); Chen & Howitt (1998); Li & Ma (2009).

The magnitude of the shear stress required for the first type of transformation
is of the order of the shear modulus (Eq. (2.4)). This is in contrast to ex-
perimental results indicating much smaller resolved shear stresses. However,
the dislocation based mechanism explains the commonly observed lenticular
shape of twinning lamellas (see Fig. 2.8) as well as the low activation stress of
twinning, see Barrett (1949); Frank (1951); Thompson & Millard (1952); Yoo
et al. (2002); Li & Ma (2009); Wang et al. (2009).

Fig. 2.9 illustrates schematically the transformation of a particular twinning
invariant to its conjugate by the motion of zonal dislocations in the direction of
applied shear stresses. Furthermore, a hysteresis loop appears in the related
stress vs. strain diagram through a cyclic deformation. Starting from the
original material element (Fig. 2.9(A)), the parallelepiped sample represents
the material with the initial crystallographic orientation. At the outset of
loading, the sample gives an elastic response before the applied stress reaches
the critical value (σCRSS). Then, zonal dislocations are initiated at the right-
hand side of the sample moving toward the direction of the applied shear stress,
(Fig. 2.9(B)). The downward motion of the interface between two invariants is
mediated by waves of zonal dislocations. During the motion of the interface,
a stress plateau appears in the stress vs. strain diagram. Once the sample
is completely transformed into the second crystallographic invariant, further
strain is accommodated by elastic deformation. Releasing the load gives rise to
the second stress free invariant, (Fig. 2.9(C)). Reverse loading stimulates the

e1e2e1e2 e1e2

e1e2 e1

e2 e2

e1

a) b) c)

d) e) f)

Figure 2.10: Schematic representation of the effect of a normal dislocation
(a-c) and a zonal dislocation (d-f) on the crystallographic orientation of the
parent crystal lattice
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zonal dislocation to move in the opposite direction and results in the second
stress plateau, (Fig. 2.9(D)). Finally, the material structure is transformed
into the initial invariant after unloading, (Fig. 2.9(A)).

Remark 2 At first glance, the kinematics of the zonal dislocation resembles
the one presented in ideal dislocation plasticity (Section 2.2.2.1). However, the
key difference is that once a zonal dislocation passes over a material element,
it reorients the lattice base vectors.

Remark 3 If only one twinning variant is active, self and latent hardening
do not occur since the Burgers vectors of zonal dislocations are parallel to each
other (see Fig. 2.8 and Fig. 2.9b). For a comparison with ideal dislocation
plasticity, refer to Section 2.2.2.1. However and in contrast to dislocation
slip, the material element does not only experience plastic slip, but also a
reorientation of the lattice. Consequently, the stress power is partly dissipated
through dislocation slip and partly stored as crystal reorientation.

2.4 Micro-mechanical deformation systems of magnesium

Since the objective of the current thesis is the modeling of plastic deformation
of magnesium, a short review of its micro-mechanical deformation systems is
given in this section. Attractive features of magnesium and its alloys, which
were discussed in Chapter 1, make them the topic of a significant number of
research studies. Accordingly, one can find a large number of comprehensive
experimental and analytical studies regarding slip and twinning in magnesium
(Schmid, 1924; Siebel, 1939; Hauser et al., 1955; Reed-Hill & Robertson, 1957a;
Yoshinaga & Horiuchi, 1963; Tegart, 1964; Roberts & Partridge, 1966; Won-
siewicz & Backofen, 1967; Kelley & Hosford, 1968; Obara et al., 1973; Yoo,
1981; Ando & Tonda, 2000; Agnew et al., 2001, 2005; Beausir et al., 2008; Li
& Ma, 2009; Byer et al., 2010; Lilleodden, 2010). According to these publica-
tions and works cites therein, the number of possible deformation systems in
magnesium is relatively large. However, in this section, special focus is on the
energetically most favorable deformation systems which contribute to plastic
deformation in conventional forming processes.

The energetically most favorable slip systems in HCP metals are prismatic and
basal moving on 〈a〉. They provide four independent deformation systems.
However, the resultant shear strain component of pyramidal slip on 〈a〉 is
equivalent to slip on basal and prismatic planes. Once a slip system becomes
active with the Burgers vector of the type 〈a〉 + 〈c〉, it satisfies the Taylor
criterion for homogeneous plastic deformation, see Taylor (1938); Kratochvil
& Sedlacek (2004). In general, the relative activity of dislocations with the
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Burgers vector in basal plane 〈a〉 compared to those with a Burgers vector of
the type 〈a〉+ 〈c〉 is dictated by the crystal axial ratio c/a. Higher magnitudes
of c/a result in a lower activity of 〈a〉+ 〈c〉 systems. The possible slip modes
(slip direction + glide plane) in HCP metals are listed in Tab. (2.2).

2.4.1 Dislocation systems

Fig. 2.11 illustrates the frequently reported crystallographic slip planes and
directions in magnesium single crystal. Through experimental analyses it has
been revealed that basal slip is the most dominant deformation mode in mag-
nesium alloys in a wide range of testing temperatures, see Burke (1952); Hauser
et al. (1955). In these studies, it is also revealed that the prismatic system is
active, but only in regions with higher stress intensities. If the basal system
is suppressed by geometrical constraints, e.g. a tensile test perpendicular to
the basal plane, the prismatic system 〈a〉 and the pyramidal system 〈a〉+ 〈c〉
govern plastic deformation, see Reed-Hill & Robertson (1957a); Yoshinaga &
Horiuchi (1963).

0.
32

 n
m

0
.5

2
 n

m

[21̄1̄0]

[11̄00]

[12̄10]

[01̄10]

[1̄1̄20]

[101̄0]
[112̄0]

[011̄0]

[1̄21̄0]

[1̄100]

[2̄110]

[0001]

[0001̄]

[1̄010]

c

a3

a1
a3

a1

a2

c

(0002)
(11̄00)

(101̄0)

(11̄01)

(112̄0)

(12̄11)

(12̄12)

a2

Figure 2.11: Geometrical illustration of frequently reported crystallographic
slip planes and directions in a single crystal magnesium
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Table 2.2: Independent dislocation systems in HCP metals, cf. Yoo (1981)

Direction Plane Notation Number of independent modes

〈a〉 Basal {0002}〈112̄0〉 2

〈a〉 Prismatic {11̄00}〈112̄0〉 2

〈a〉 Pyramidal {11̄01}〈1120〉 4

〈a〉+ 〈c〉 Pyramidal {101̄1}〈112̄3̄〉 4

〈a〉+ 〈c〉 Pyramidal {21̄1̄1}〈112̄3̄〉 4

〈a〉+ 〈c〉 Pyramidal {112̄2}〈112̄3̄〉 4

2.4.2 Twinning systems

2.4.2.1 Tensile twinning

It has been identified that elongating a single crystal magnesium toward the
c-axis activates twinning at the plane κ := {101̄2}. Twinning occurs because
it requires less activation energy than pyramidal slip 〈a〉 + 〈c〉. The crystal
structure of the twinning phase is the mirrored counterpart of the initial crystal
with respect to κ := {101̄2}. This leads to 86.3 degrees rotations of the basal
planes, see Wonsiewicz & Backofen (1967). Fig. 2.12(b) shows the relative
configuration of the crystal orientation of the initial and twinning phase. A
rotation of the crystal lattice changes the Schmid factor of the current active
or non-active slip systems by the transformation of their characteristic vectors.
Since the rotation angle is nearly 90 degrees, a new set of deformation systems
may result in a totally different deformation response than the one of the initial
crystal.

2.4.2.2 Contraction twinning

Pioneering works on single crystal magnesium at room temperature reveal
the traces of contraction twinning at the plane κ := {101̄1} (Wonsiewicz &
Backofen, 1967; Reed-Hill & Robertson, 1957a; Reed-Hill, 1960; Couling et al.,
1959). Fig. 2.12(c) shows the mechanism of contraction twinning proposed by
Wonsiewicz & Backofen (1967). Under compression loading, twinning lenticu-
lars are observed at the plane κ := {101̄1}. The close packed layers of twinning
lenticulars have a 56 degrees angular difference with the basal planes of the
initial crystal. The resolved shear stress on the tensile twinning system within
the lenticular increases upon first contraction twinning. Thus, tensile twinning
occurs immediately inside the initial twin resulting in a 37 degrees rotation
angle with respect to basal planes in the initial crystal (Fig. 2.12(d)). This
mechanism is called double twinning.
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Figure 2.12: Rotation of basal planes due to twinning, a) the initial mate-
rial element representing the initial crystallographic directions c and a1, b)
lenticular represents the tensile twinning, c) contraction twinning, d) double
twinning

Remark 4 While there is an agreement about tensile twinning, the existence
of contraction twinning is still under debate. Although most of the pioneer-
ing works indicate that contraction twinning is the dominant deformation sys-
tem, recent analyses using precisely prepared micro-samples, indicate that the
pyramidal system governs the contraction deformation, see Byer et al. (2010);
Lilleodden (2010). In the current thesis, the pyramidal deformation system is
thus considered.

2.4.3 Channel die test

Plastic deformations of single crystal magnesium have been investigated by
Wonsiewicz & Backofen (1967) and Kelley & Hosford (1968) in the late six-
ties. The present author realized that their experimental results still provide
the most comprehensive information about magnesium micro-mechanical de-
formation systems. The primary data published by Kelley & Hosford (1968)
is used in the following chapters as reference characterizing the hardening be-
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Table 2.3: Crystallographic orientations used in the channel die tests on mag-
nesium single crystals by Kelley & Hosford (1968)

Test label Loading direction Constrained direction

A [0001] [101̄0]

C [101̄0] [0001]

E [101̄0] [12̄10]

G [0001]at 45o [101̄0]

havior of magnesium.

Kelley and Hosford (Kelley & Hosford (1968)) prepared seven hexahedron sin-
gle crystal samples. The samples were cut out of a single crystal bar with a
predetermined crystal orientation. The crystal orientation varied among the
samples while having the same cuboid exterior geometry. The crystal orienta-
tion of each sample was chosen such that a specific slip system became active.
The crystallographic orientations of four samples used by Kelley & Hosford
(1968) are given in Tab. 2.3. The remaining three samples are omitted here
because of their similar deformation behavior. Further detailed information
regarding the sample preparation and compression procedure are omitted here.
The results of the channel die tests in terms of true stress vs. true strain in
the punching direction (z-axis) are shown in Fig. 2.13 where the directional
dependency of the deformation of single crystal magnesium is clearly demon-
strated. Comparisons of this data with numerically obtained results will be
given in Chapter 7.
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Figure 2.13: Experimental data of the channel die tests on magnesium single
crystals in terms of true stress vs. true strain conducted by Kelley and Hosford
(Kelley & Hosford (1968))
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3 Fundamentals of continuum mechanics

In the previous chapter, micromechanical deformation systems have been in-
troduced at the atomistic-scale. Instead of considering the material as a large
collection of discrete atoms, a continuum mechanical standpoint is adopted
here. Consequently, the description of the mechanical behavior of the bulk
material is simplified by using an averaging method such that the material
body is considered as a continuous medium. This chapter is devoted to present
a short review of the kinematics as well as the governing laws describing the
response of continuous media (continuum mechanics). Though, nowadays,
these funduments are well established in literature, they are required for the
models proposed in this work. For further details, the reader is referred to
the works Truesdell & Noll (1965a); Holzapfel (2000); Haupt (2000); Mosler
(2007). Special attention is given to the behavior of metallic materials.

3.1 Kinematics

In a three dimensional Euclidean space (R3) any material point P of a body
B within the domain Ω0 ⊂ R3 is addressed by a position vector (see Fig. 3.1)

X(P ) = Xiei, (3.1)

where ei are the base vectors of the Cartesian reference coordination system.
Note that in Eq. (3.1) the Einstein summation convention is applied. The
body deforms under the action of applied body forces, surface tractions and
prescribed displacements. The resulting deformation is described by the map-
ping ϕ : Ω0 → R3 which is sufficiently smooth and injective. It maps the
position X ∈ Ω0 of material particles in the reference configuration (initial
configuration) to their positions x ∈ ϕ(Ωt) in the deformed configuration (cf.
Ciarlet (1988)). The local deformation at a material point, with the position
vector X, is defined by the transformation of a line element

dx = F · dX, (3.2)

and

F = GRADϕ with GRAD :=
(•)
∂X

and grad :=
(•)
∂x

, (3.3)

25



26 Chapter 3. Fundamentals of continuum mechanics

��
��
��
��

����

��
��
��

��
��
��

����

X1, x1

X2, x2

e1

e2

X3, x3

e3

O

X x

Ω0 Ωt

dX

dx

P0

Pt

ϕ

∂Ω0

∂Ωt

Figure 3.1: Reference and current configuration of a material body in the
Cartesian reference coordinate system

where F is a second-order two-point tensor representing the material deforma-
tion gradient. Being continuously differentiable with respect to X and time t
(smooth function), the deformation map (ϕ) preserves continuity of the mate-
rial. Since ϕ|Ω is injective, ϕ(−1)|Ω exists and by the implicit function theorem
detF 6= 0 ∀X ∈ Ω. Moreover, the local invertibility condition follows

detF > 0 ∀X ∈ Ω, (3.4)

see Truesdell & Noll (1965a); Mosler (2007). Accordingly, F ∈ GL+(3) with
GL+(n) denoting the general linear group of dimension n showing a positive
determinant. With this property, the following polar decompositions exist:

∀F ∈ GL+(3) ∃R,U ∈ GL+(3) : F = R ·U
∀F ∈ GL+(3) ∃R,V ∈ GL+(3) : F = V ·R.

where (·) defines the simple tensor contraction, R is a proper orthogonal tensor
R ∈ SO(3) (R−1 = RT, detR = +1) and V andU are symmetric and positive
definite stretch tensors. Accordingly,

U = R−1 · V ·R = RT · V ·R. (3.5)

Eq. (3.5) implies that U and V have the same eigenvalues (λi > 0) however,
they differ in their eigenvectors (N i and ni). These principle directions are
related by the rotation transformation

N i = RT · ni. (3.6)
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Consequently, the spectral decomposition theorem can be applied to U and
V leading to

U =

3X
i=1

λiN i ⊗N i with N i ·N j = δij (3.7)

V =

3X
i=1

λini ⊗ ni with ni · nj = δij (3.8)

where δij is the Kronecker delta. Based on the spectral decomposition, a
family of strain measures can be introduced. According to Hill (1968, 1978);
Mosler (2007), classical Hill strains are defined as

A(U) =

3X
i=1

f(λi)N i ⊗N i (3.9)

a(V ) =

3X
i=1

f(λi)ni ⊗ ni (3.10)

with f representing a scaling function which is monotonously increasing and
smooth. It is also required to meet the normalizing conditions, i.e., f(1) =
f́(1)− 1 = 0. Following the general formula for Lagrangian strain tensors

E(m) =
1

2m
(U (2m) − I), (3.11)

(see Hill (1968)), the frequently used strain tensors are defined as

• The Green-Lagrangian strain tensor

E(1) =
1

2
(U2 − I) =

3X
i=1

1

2
(λ2
i − 1)N i ⊗N i (3.12)

• The Biot strain tensor

E( 1
2 ) = (U − I) =

3X
i=1

(λi − 1)N i ⊗N i (3.13)

• The logarithmic or true strain tensor

E(0) = ln(U) =

3X
i=1

ln(λi)N i ⊗N i. (3.14)
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Remark 5 Instead of using the aforementioned strain measures, the right
Cauchy-Green deformation tensor defined as

C = FT · F = UT ·RT ·R ·U

= U2 =

3X
i=1

λ2
iN i ⊗N i

(3.15)

is also frequently applied in constitutive material modeling. According to Eq. 3.12,
C and the strain tensor E(1) are linearly related.

3.2 Balance laws

3.2.1 Conservation of mass

The mass of a closed domain Ω0 is an inherent property being the measure
of its constitutional matter. Thus, the total mass of the body B0 in a closed
domain Ω0 is given by

m =

Z
Ω0

ρ0 dV =

Z
ϕ(Ω0)

ρ dv, (3.16)

where ρ0 and ρ are the volume densities with respect to the initial Ω0 and
deformed body ϕ(Ω0). The deformation ϕ maps the volume element dV to
dv by the relation

dv = JdV with J = detGRADϕ. (3.17)

After inserting Eq. (3.16) into Eq. (3.17), the local form of the principle of
conservation of mass is obtained as

ρ0 = Jρ. (3.18)

Moreover, the mass of a closed system during a dynamic process is conserved.
Accordingly, the rate form of Eq. (3.16) can be written asZ

ϕ(Ω0)

(J̇ρ+ Jρ̇) dv = 0. (3.19)

3.2.2 Conservation of momentum

The inertia residing in a moving body is called momentum. The amount of
momentum depends directly on the mass and the velocity of the respective
object. The velocity itself depends on the spatial positions of the moving
object. It comprises a translational and a rotational part resulting in two
forms of momentum.
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3.2.2.1 Conservation of linear momentum

The Eulerian description of the linear momentum is given by

I =

Z
ϕ(Ω0)

ρϕ̇dv. (3.20)

Based on the principle of conservation of linear momentum (Newton’s second
law), the rate of change in momentum is equivalent to the applied force on the
respective body, i.e.,

İ =
d

dt

Z
ϕ(Ω0)

ρϕ̇ dv =

Z
ϕ(Ω0)

ρb dv +

Z
ϕ(∂Ω0)

t∗ da, (3.21)

where the first term on the right-hand side is the body force acting on ϕ(Ω0)
and b corresponds to the body force per unit mass. The traction vector t∗ is
defined as the force per unit surface of the boundary of the domain (Fig. 3.2).
Eq. (3.21) gives the balance of linear momentum in a weak form. Following
Cauchy’s stress theorem, a second-order tensor σ can be postulated such that
the traction vector t∗ can be expressed as a linear function of n which is the
normal vector of the unit element da, i.e.,

t∗ = σ · n. (3.22)

Applying the Gauss’ theoremZ
ϕ(∂Ω0)

σ · n da =

Z
ϕ(Ω0)

divσ dv (3.23)

the local form of conversation of linear momentum for a system with a con-
served mass is given by

divσ = ρ(ϕ̈− b). (3.24)

3.2.2.2 Conservation of angular momentum

The angular momentum with respect to the origin of the coordinate system is
defined byZ

ϕ(Ω0)

ρ(ϕ× ϕ̇) dv, (3.25)
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Figure 3.2: Cauchy stress tensor and traction vector in the deformed configu-
ration

where × denotes the cross product. The body force and the surface traction
apply a torque on a material point addressed by ϕ(X). Obviously, the applied
torque and Eq. (3.25) are strictly dependent on the choice of the reference point
(origin). Euler’s law of motion states that the rate of change of the angular
momentum is equivalent to the applied torque, i.e.,

d

dt

Z
ϕ(Ω0)

ρ(ϕ× ϕ̇) dv =

Z
ϕ(Ω0)

ρ(ϕ× b) dv +

Z
ϕ(∂Ω0)

ρ(ϕ× t∗) da. (3.26)

Expanding the left-hand side of Eq. (3.26) results inZ
Ω0

( ˙ρJ)(ϕ× ϕ̇) dV +

Z
Ω0

ρ(ϕ̇× ϕ̇) JdV +

Z
ϕ(Ω0)

ρ(ϕ× ϕ̈) dv

=

Z
ϕ(Ω0)

ρ(ϕ× b) dv +

Z
ϕ(∂Ω0)

ρ(ϕ× (σ · n)) da.

(3.27)

By virtue of Eq. (3.19) and (ϕ̇ × ϕ̇ = 0), the application of the divergence
theorem to the right-hand side of Eq. (3.27) givesZ

ϕ(Ω0)

ϕ× (divσ + ρb− ρϕ̈)dv +

Z
ϕ(Ω0)

gradϕ× σ dv = 0. (3.28)
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Inserting Eq. (3.24) into Eq. (3.28) leads toZ
ϕ(Ω0)

gradϕ× σ dv = 0, (3.29)

and following a straightforward tensor algebra, the local form of the conserva-
tion of the angular momentum is written as

I × σ = 0. (3.30)

Eq. (3.30) implies σ = σT which is know as Cauchy’s second law of motion.
Note that in Eqs. (3.28-3.30), the cross product of two second-order tensor
(A1, A2) is defined as

A1 ×A2 = I : (A1 ·AT
2 ), (3.31)

where I denotes the third-order isotropic tensor.

3.2.3 Conservation of energy

One of the principal laws of thermodynamics is the conservation of energy.
It is empirically understood that the total energy of a closed system is con-
served over time. Despite the total energy, different forms of energy are not
conserved. The energy of a thermo-mechanical system consists of thermal Q,
kinetic K and internal energy Eint. Though the total amount of the energy is
conserved, dealing with the rate form of the energy balance is more practical
in mechanical problems. For a quasi-static condition where K̇ = 0, the law of
energy conservation reads

◦
Eint = Pext +

◦
Q, (3.32)

where Pext is the power expended by forces applied to the body ϕ(Ω), which
can be computed as

Pext =

Z
ϕ(Ω0)

ρb · ϕ̇dv +

Z
ϕ(∂Ω0)

t∗ · ϕ̇da. (3.33)

The rate of change of the thermal energy is given as

◦
Q =

Z
ϕ(Ω0)

ρg dv −
Z

ϕ(∂Ω0)

q · n da (3.34)

Here, g denotes the material heat-source density and q · n depending on the
normal vector n of the hyperplane ϕ(∂Ω) is the outward material heat flux.
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It should be emphasized that the variable
◦
Q has to be understood as defined

by Eq. (3.34) and it is not necessarily the time derivative of a function Q, cf.
Stein & Barthold (1995). The remaining term of Eq. (3.32) is the rate of the

internal energy E. According to experimental evidence, the integral of
◦
E over

a time period is path-independent. Thus, the existence of a material internal
energy density potential u per unit mass can be justified and hence, the total
internal energy is written as

Eint(ϕ(Ω0)) =

Z
ϕ(Ω0)

ρu dv. (3.35)

Therefore, the rate of internal energy is simplified to the time derivative of

Eq. (3.35), i.e.,
◦
E = Ė. Finally, using the divergence theorem, conservation of

linear momentum and assuming sufficiently smooth solutions, the balance law
of energy is given by

ρu̇ = σ : l+ ρg − divq, (3.36)

where

l = Ḟ · F−1, (3.37)

is the velocity gradient.

3.2.4 Balance of entropy

In statistical mechanics entropy is the measure of disorder of a system. Based
on the second law of thermodynamics the entropy of a closed system increases
during an irreversible process and remains conserved for a reversible process.
In other words, the balance of entropy defines the direction of a thermodynam-
ical process. Following Coleman & Gurtin (1967); Truesdell & Noll (1965a),
at absolute temperature θ, the second law of the thermodynamics states that
the rate of entropy in a system is never smaller than the rate of entropy due
to heat. This can be written as

d

dt

Z
ϕ(Ω0)

ρŝdv ≥
Z

ϕ(Ω0)

ρg

θ
dv −

Z
ϕ(∂Ω0)

q · n
θ

da, (3.38)

where ŝ is the entropy density function of a unit mass of the material body
in the current configuration. Using the divergence theorem and assuming a
sufficiently smooth solution, the local form of Eq. (3.38) is written as

ρ ˙̂s− ρg

θ
+ div

q

θ
≥ 0. (3.39)
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Another way of expressing the second law of thermodynamics which is more
popular in constitutive modeling of materials is the Clausius-Duhem inequality.
Unlike Eq. (3.38), the Clausius-Duhem inequality is expressed in terms of the
Helmholtz energy. More precisely, by defining the Helmholtz energy ψ through
a Legendre-Fenchel transformation of the type

ψ(•, θ) = inf
ŝ


u(•, ŝ)−

„
∂u

∂ŝ

«
ŝ

ff
, (3.40)

the Clausius-Duhem inequality reads

σ : l− ρ
“
θ̇ŝ+ ψ̇

”
− 1

θ
q · gradθ ≥ 0. (3.41)

If a Fourier-type heat transfer model is assumed or if gradθ = 0, a sufficient
condition of Eq. (3.41) is provided by the well know Clausius-Planck inequality,
i.e.,

σ : l− ρ
“
θ̇ŝ+ ψ̇

”
≥ 0. (3.42)

By introducing the stress tensor in the initial configuration (the first Piola-
Kirchhoff stress tensor)

P = detF σ · F−T, (3.43)

as well as the entropy density function of unit mass of the material body in
the initial configuration Ŝ, the Lagrangian description of the Clausius-Planck
inequality can be given as

P : Ḟ − ρ0

“
θ̇Ŝ + ψ̇0

”
≥ 0, (3.44)

see Truesdell & Noll (1965b); Simo (1998); Mosler (2007).
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4 Constitutive modeling

Based on the kinematic relations and the balance laws reviewed in the previous
chapter, the fundamentals of material modeling are presented here. Initially,
reversible (elastic) deformation is analyzed. However, since the focus of this
thesis is on the deformation of metallic materials (particularly magnesium),
irreversible (plastic) deformations cannot be neglected. They are described by
introducing a set of internal state variables, see Section 4.2.

4.1 Hyperelasticity

If the work of deformation,

W =

Z t+∆t

t

P dt =

Z t+∆t

t

P : Ḟdt =

Z F t+∆t

F t

P : dF (4.1)

is path-independent, the corresponding material is called hyperelastic. Conse-
quently, a potential Ψ exists such that

P =
∂Ψ(F )

∂F
and Ψ̇ = P : Ḟ . (4.2)

By inserting Eq. (4.2) into Clausius-Planck inequality (Eq. 3.44), the identity

Ψ(F ) = ρ0ψ0(F ) (4.3)

is obtained. It implies that hyperelasticity can be uniquely defined by the
Helmholtz free energy (a scalar-valued potential). It is possible to define the
Helmholtz energy as function of the right Green-Cauchy strain tensor,

Ψ(C) = Ψ(FT · F ), (4.4)

thereby Eq. (4.4) satisfies the objectivity principle. For a detailed discussion
about the implication induced by the principle of objectivity, see, for instance,
Ciarlet (1988). According to Eq. (4.2), the first Piola-Kirchhoff stress tensor
can be computed as

P =
∂Ψ(C)

∂F
=
∂Ψ(C)

∂C
:
∂C

∂F
= 2F · ∂Ψ(C)

∂C
. (4.5)

35
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Due to the fact that C is a symmetric tensor, the partial derivative of the
scalar-valued function Ψ(C) with respect to C can be represented by a sym-
metric tensor. By virtue of Eq. (3.43), it can be shown that

P · FT = 2F · ∂Ψ(C)

∂C
· FT = F · PT, (4.6)

which implies that the balance of angular momentum and consequently Eq. (3.26)
and Eq. (3.30) are automatically fulfilled. Note that in Eq. (4.6), the standard
permutation of tensors in a scalar product is applied, i.e., (A1 ·A2 : A3 ·A4 =
A2 ·AT

4 : AT
1 ·A3), cf. Levitas (1998).

4.1.1 Examples

In this work, two different hyperelastic material models are considered. In
both cases, isotropy of material is assumed.

4.1.1.1 St. Venant-Kirchhoff model

The St. Venant-Kirchhoff model is one of the simplest hyperelastic material
models. In this model the elastic stored energy is defined by

Ψ(E) =
1

2
E : K : E. (4.7)

Here, E(C) is the Green-Lagrangian strain tensor (Eq. (3.12)) and K is the
fourth-order stiffness tensor. In the case of isotropic materials, Eq. (4.7) can
be written as

Ψ(E) =
λE

2
(I : E)2 + µI : E2. (4.8)

In Eq. (4.8), {λE, µ} are the Lamè parameters.

Remark 6 It is evident that the material model given by Eq. (4.8) does not
satisfy the physical constrains regarding extreme loading condition such as infi-
nite stress for infinite compression, see Ciarlet (1988); Kintzel (2007); Mosler
(2008).

4.1.1.2 neo-Hooke model

The neo-Hookean hyperelastic material models were developed to cover large
non-linear elastic deformations, see Simo & Pister (1984); Ciarlet (1988). One
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frequently used material model falling into this range of such constitutive laws
is given by the Helmholtz energy

Ψ(C) =
λE

2
(ln(J))2 − µ ln(J) +

µ

2
(tr(C)− 3). (4.9)

Note that the existence of solutions depends on convexity of the strain energy
function. This will be explained in more detail is Chapter 5.

Remark 7 Given Eq. (4.9) depends only on the stretch tensor (C = U2), it
satisfies the principle of objectivity. Moreover, in the case of infinite compres-
sion (J → 0+), or infinite stretching ({||F || + ||CofF || + detF } → ∞+), the
elastic strain energy tends to infinity – as required by physics.

4.2 Crystal plasticity theory

Elasticity theory exclusively deals with fully reversible deformation processes.
Ideal elasticity in engineering materials, in the sense of non-dissipative pro-
cesses, has been only observed in whiskers wires, see Yoshida et al. (1968).
Due to the fact that microstructures of materials are not perfectly ordered
and comprise defects, the total deformation recovers only partly after being
fully unloaded. The non-reversible part is related to the change in the state
of internal defects (Chapter 2). For instance, motion of dislocation and an-
nihilation on the surface (or trapped inside the lattice) result in a class of
non-reversible deformation. Another classical example is failure of materials
due to initiation and growth of micro-cracks. In Section 4.2.1, a brief review of
continuum models describing the plastic behavior of metallic materials (crystal
plasticity) is given. Detailed information can be found in the pioneering work
by Rice (1971) and Asaro & Rice (1977); Asaro (1983); Asaro & Needleman
(1985); Cuitiño & Ortiz (1992); Ortiz & Repetto (1999); Miehe et al. (2002).
A variational reformulation of the crystal plasticity model in Section 4.3 is also
discussed. Although such a framework is not frequently applied, it is already
relatively well developed. Further details concerning the variational structure
of plasticity theory can be found, e.g., in Ortiz & Stainier (1999); Mosler &
Bruhns (2009b).

4.2.1 Fundamentals of crystal plasticity theory

For the modeling of inelastic processes such as those related to dislocation slip,
a nowadays standard multiplicative decomposition of the deformation gradient
is adopted. More precisely, with

F = F e · F p with det(F e) > 0 and det(F p) > 0, (4.10)



38 Chapter 4. Constitutive modeling

the deformation gradient F = GRADϕ(X) is decomposed into a plastic part
F p, which transforms the reference body to an intermediate, incompatible,
stress-free configuration, and an elastic part F e corresponding to the elastic
distortion Lee (1969). Hardening effects are taken into account by means of a
finite set of strain-like internal variables λ ⊂ Rn. Obviously, those variables are
related to the accumulated shear strain caused by dislocation slip, cf. Lubliner
(1972); Ortiz & Repetto (1999). With the aforementioned definitions and by
assuming isothermal conditions, a Helmholtz energy of the type

Ψ = Ψ(F ,λ) (4.11)

is postulated, cf. Lubliner (1972, 1997); Simo & Hughes (1998). Since the elas-
tic stored energy depends only on the elastic distortion (the elastic response
of a solid is not affected by plastic deformations), the Helmholtz energy can
be additively decomposed into an elastic part Ψe and a plastic part Ψp corre-
sponding to plastic work. Combining this with the principle of material frame
indifference, the stored energy can, thus, be written as

Ψ = Ψe(Ce) + Ψp(λ). (4.12)

Here and henceforth, Ce := F eT ·F e is the elastic right Cauchy-Green tensor.
In what follows, Ψp is further decomposed into a part Ψp

self related to self
hardening and Ψp

lat associated with latent hardening, i.e.,

Ψp = Ψp
self + Ψp

lat. (4.13)

While the elastic response of a single crystal is completely defined by assum-
ing a physically sound energy Ψe, plastic deformations require, in addition
to the energy Ψp, suitable evolution equations fulfilling the second law of
thermodynamics. For deriving those evolution equations, the Clausius-Planck
dissipation inequality

D = P : Ḟ − Ψ̇ = S :
1

2
Ċ − Ψ̇ ≥ 0 (4.14)

is considered, cf. Coleman (1964). In Eq. (4.14), P and S are the first and
second Piola-Kirchhoff stress tensors and the superimposed dot denotes the
material time derivative. Applying the Coleman & Noll procedure to elastic
unloading (Coleman, 1964), yields the elastic response

S = 2
∂Ψ

∂C
= 2(F p)−1 · ∂Ψ

∂Ce · (F
p)−T (4.15)

and finally, by inserting Eq. (4.15) into the Clausius-Planck inequality (4.14),
the reduced dissipation inequality

D = Σ : lp +Q · λ̇ ≥ 0 (4.16)
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with Σ := 2Ce · ∂CeΨe being the Mandel stresses (Mandel, 1972), lp := Ḟ
p ·

(F p)−1 denoting the plastic velocity gradient (with respect to the intermediate
configuration) and Q being a set of stress-like internal variables conjugate to
the strain-like internal variable λ, i.e.,

Q = −∂Ψ

∂λ
. (4.17)

For the modeling of isotropic hardening in single crystals, the vectorQ contains
n stress-like internal variables corresponding to the admissible slip systems,
i.e., Q = [Q(1), . . . Q(n)]. Each of those is defined according to

Q(a) = −∂λ(a)Ψ
p = −

Ψp
self

∂λ(a)
−

Ψp
lat

∂λ(a)
= Q

(a)
self +Q

(a)
lat (4.18)

where λ(a) is the strain-like internal variable conjugate to Q(a). For providing
certain loading conditions, i.e., deciding whether elastic unloading or plastic
loading occurs, an admissible stress space Eσ

Eσ =
˘

(Σ,Q) ∈ R9+n
˛̨
φ(a)(Σ, Q(a)) ≤ 0, a = 1, ..., n

o
(4.19)

is introduced. It is defined by n convex yield functions φ(a). Each of those is
associated with a certain slip system within the respective single crystal and
assumed to be governed by Schmid’s law. More explicitly,

φ(a)(Σ,λ) = |Σ : N (a)| − (Σ
(a)
0 −Q(a)(λ)). (4.20)

Accordingly, the applied resolved shear stress at slip system a (the slip activa-
tion force) computed by projecting the Mandel stresses Σ onto the slip plane
using the Schmid tensor N (a) := (s(a) ⊗m(a)) is compared to the material’s

current strength which, is decomposed into an initial yield stress Σ
(a)
0 and an

additional hardening term Q(a). The time invariant orthogonal unit vectors
m(a) and s(a) correspond to the normal of the slip plane and the direction of
the plastic shear strain, respectively.

By combining dissipation inequality (4.16) with the space of admissible stresses
(4.19), physically sound evolution equations can be derived. For that purpose,
the postulate of maximum dissipation is considered here, cf. Hill (1972). A
straightforward computation yields in this case

lp =

nX
a=1

ς(a) ∂φ
(a)

∂Σ

=

nX
a=1

ς(a) sign[Σ : N (a)] N (a) and λ̇a = ς(a) ∂φ
(a)

∂Q(a)
= ς(a),

(4.21)
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together with the Karush-Kuhn-Tucker optimality conditions

ς(a) ≥ 0 , ς(a) φ(a) = 0, (4.22)

cf. Rice (1971); Luenberger (1984). In Eqs. (4.21)–(4.22), ς(a) is the plas-
tic multiplier associated with slip system a. It can be computed from the
consistency conditions φ̇(a) = 0. By inserting Eq. (4.21) into the dissipation
inequality (4.16), the dissipation is obtained as

D =

nX
a=1

ς(a)
h
sign[Σ : N (a)] (Σ : N (a)) +Q(a)

i
φa=0

=

nX
a=1

ς(a) Σ
(a)
0 ≥ 0.

(4.23)

Since Σ
(a)
0 > 0 and ς(a) ≥ 0, the second law of thermodynamics is indeed

fulfilled. The closed form expression for the dissipation is a direct consequence
of the positive homogeneity of the equivalent stresses |Σ : (s(a) ⊗m(a))|.

4.3 A variational reformulation of crystal plasticity theory

A variational reformulation of crystal plasticity theory discussed before is ad-
dressed here. For this theory and following Ortiz & Stainier (1999); Mosler &
Bruhns (2009b), the stress power is given by

Ẽ(ϕ̇, Ḟ
p
, λ̇,Σ,Q) = Ψ̇(ϕ̇, Ḟ

p
, λ̇) +D(λ̇) + J(Σ,Q) (4.24)

Here, the characteristic function of the admissible stress space

J :=


0 ∀(Σ,Q) ∈ Eσ
∞ otherwise

(4.25)

has been introduced. Accordingly, J penalizes the functional (4.24) for in-
admissible stress states. It can be shown that the stationarity conditions of
functional (4.24) are equivalent to the crystal plasticity model discussed in the
previous section, cf. Carstensen et al. (2002), i.e.,

∂ΣẼ = 0⇒ lp =

nX
a=1

ς(a) ∂φ
(a)

∂Σ

∂QẼ = 0⇒ λ̇a = ς(a) ∂φ
(a)

∂Q(a)

∂λ̇(a) Ẽ = 0⇒ Q(a) = −∂λ(a)Ψ
p

∂Ḟ p Ẽ = 0⇒ Σ = 2 Ce · ∂CeΨe.

(4.26)
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Hence, this stationarity problem represents a variational reformulation of crys-
tal plasticity theory. By enforcing the postulate of maximum dissipation (max-
imization with respect to the stress-like variables) the reduced stress power,
now a function in terms of strain-like variables only, reads

E(ϕ̇, Ḟ
p
, λ̇) = Ψ̇(ϕ̇, Ḟ

p
, λ̇) + J∗(Ḟ

p
, λ̇). (4.27)

Here, J∗ is the Legendre transformation of the characteristic function J . Phys-
ically speaking and considering associative evolution equations, it is the dissi-
pation.

Interestingly and in contrast to the stationarity problem statẼ , the crystal
plasticity model described in the previous subsection can now be formulated
as a minimization problem of the type inf E . More precisely, the evolution
equations (4.21) are equivalent to

(Ḟ
p
, λ̇) = arg inf

Ḟ
p
,

˙λ
E(ϕ̇, Ḟ

p
, λ̇). (4.28)

Minimization principle (4.28) gives rise to the introduction of the reduced
functional

Ê(ϕ̇) := inf E = P : Ḟ . (4.29)

Accordingly and in line with hyperelastic materials, this pseudo potential de-
fines the stress response, i.e,

P = ∂Ḟ Ê . (4.30)

Remark 8 In case of rate-independent plasticity theory, the dissipation is a
positively homogeneous function of degree one, cf. Ortiz & Stainier (1999);
Hackl & Fischer (2008) (see also Eq. (4.23)). In the present chapter, it fol-
lowed from a Legendre-Fenchel transformation applied to the characteristic
function of the space of admissible stresses, see Mosler & Bruhns (2009a);
Homayonifar & Mosler (2011). Thus, it depends on the underlying yield func-
tion representing the primary assumption. By way of contrast, the dissipation
and the flow rule represent the primary variables in Ortiz & Stainier (1999);
Ortiz & Repetto (1999) and the yield function is derived from them. Both
methods are connected through a Legendre-Fenchel transformation. Therefore,
they are essentially equivalent for rate-independent processes. However, de-
pending on the application, one of these methods can be advantageous. For
instance, the approach advocated in Ortiz & Stainier (1999); Ortiz & Repetto
(1999) will be chosen for elaborating the model suitable for the analysis of
deformation-induced twinning.
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4.3.1 Numerical implementation - Variational constitutive updates

Based on minimization principle (4.28), effective numerical implementations
can be developed, Ortiz & Repetto (1999); Carstensen et al. (2002); Miehe
(2002); Mosler & Cirak (2009). For that purpose, a time discretization of the
continuously defined functional (4.27) of the type

Iinc =

tn+1Z
tn

Ẽ dt = Ψn+1−Ψn+

nX
a=1

∆ς(a) Σ
(a)
0 , ∆ς(a) :=

tn+1Z
tn

ς(a) dt (4.31)

is considered. Here, tn and tn+1 are two pseudo times. For computing the
Helmholtz energy Ψ at time tn+1, the plastic part of the deformation gradient is
approximated by means of an exponential integration scheme, while a classical
backward Euler discretization is applied to the strain-like internal variables,
i.e.,

F p
n+1 = exp(∆t lp) · F p

n , λ
a
n+1 = λan + ∆ς(a). (4.32)

Inserting these approximations into Eq. (4.31), together with the flow rule
(4.21), the incrementally defined functional Iinc depends on the unknown slip
rates (discrete increments) as well as on the current deformation gradient (the
old state is known in numerical schemes such as the finite element method).
As a consequence,

Iinc = Iinc(F n+1,∆ς
(1), . . . ,∆ς(n)). (4.33)

Based on this functional, the slip rates can be computed according to

(∆ς(1), . . . ,∆ς(n)) = arg inf
∆ς(1),...,∆ς(n)

Iinc|Fn+1 (4.34)

and finally, the stresses are defined by

P = ∂Fn+1 inf
∆ς(1),...,∆ς(n)

Iinc. (4.35)

In addition to its physical and mathematical elegance, the variational con-
stitutive update presented here shows further advantages. For instance, the
determination of the set of the active slip systems is naturally included within
the optimization problem and thus, sophisticated regularization techniques
such as those in Schmidt-Baldassari (2003); McGinty & McDowell (2006); Za-
miri et al. (2007) are not required. Even more importantly, energy principles
provide a physically sound basis for coupling different models, cf. Mosler &
Cirak (2009), i.e., the energetically most favorable combination between the
respective models is considered. Such a canonical coupling is also proposed in
the present thesis for combining plastic slip and deformation-induced twinning.
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In the previous chapter, a variational framework for crystal plasticity theory
based on energy minimization was discussed. The existence of the solution of
such a variational problem is strongly related to the convexity of the internal
energy (Ψ). Interestingly, convexity conditions are connected to microstruc-
tures in materials. For instance, in the late twentieth century, the evolution
of the material microstructure has been explained based on a certain class of
convex energy functions, see Ericksen (1979); Ball & James (1987); Ortiz &
Repetto (1999). Accordingly, the current chapter is devoted to give a brief re-
view of the general concept of convexity suitable for the constitutive modeling
of materials. For more detailed studies, the reader is referred to Morrey (1952);
Rockafellar (1970); Ball (1977); Ciarlet (1988); Dacorogna (2008); Schröder &
Neff (2010).

5.1 Convexity

A function Ψ(F ) is convex if for any λ ∈ [0, 1] and ∀ F ∈ Rn×n

Ψ
`
(1− λ)F+ + (λ)F−

´
≤ (1− λ)Ψ(F+) + (λ)Ψ(F−). (5.1)

A graphical interpretation of Eq. (5.1) is given in Fig. 5.1. Note that Fig. (5.1)
is only a schematic illustration since the tensorial deformation field can not
be shown. Although a convex energy potential is desired, convexity violates
the physical principle of objectivity, see Ciarlet (1988). Thus, the convexity
condition of the stored energy function (Ψ) must be ruled out. This condition
can be replaced by a more suitable weaker requirement.

5.2 Poly-convexity

A weaker requirement of convexity was proposed in Ball (1977) and Ciarlet
(1988). According to these references, a function Ψ is poly-convex, if there
exists a function Ψ̂ which is convex on the set

S := {(F ,CofF , detF )} , (5.2)

43
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Ψ(F+)

Ψ(F−)

Ψ((1− λ)F+ + (λ)F−)

Ψ

(a) Convex

Ψ

Ψ(F−)

Ψ((1− λ)F+ + (λ)F−)

Ψ(F+)

(b) Non-convex

Figure 5.1: A schematic illustration of convexity. The connecting straight line
between Ψ(F+) and Ψ(F−) is always located above the surface of a convex
function, while this does not hold in the case of a non-convex function.

and

Ψ(F ) = Ψ̂(F ,CofF , detF ), (5.3)

where CofF denotes the cofactor of F . Note that the geometrical elements in
the material configuration (infinitesimal line element dX, area element dA =
NdA and volume element dV ) are transformed to the current configuration
using the set S and the standard transformations:

dx = FdX , da = nda = CofF ·NdA , dv = detFdV. (5.4)

Analogous to Eq. (5.1), Ψ is poly-convex if for any λ ∈ [0, 1] and ∀ F ∈ Rn×n

Ψ
`
(1− λ)(F ,CofF , detF )+ + (λ)(F ,CofF ,detF )−

´
≤

(1− λ)Ψ
`
(F ,CofF ,detF )+´+ (λ)Ψ

`
(F ,CofF ,detF )−

´
.

(5.5)

According to Dacorogna (2008), although convexity implicates poly-convexity,
the converse does not hold, i.e.,

poly-convexity ; convexity. (5.6)

For instance, Ψ(F ) : R2×2 →R defined as

Ψ(F ) := detF (5.7)

is poly-convex, while it is not a convex function. Convexity was also exam-
ined earlier by another weaker form of convexity which is quasi-convexity, see
Morrey (1952).
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Ω̂ Ω̃

Ω

F (X)
F (X) + GRAD(ϕ)

1
(meas Ω)

∫
Ω

Ψ (F (X) + GRAD(ϕ)) dX

ϕ

Ψ (F (X))

Ψ

Figure 5.2: A graphical illustration of the concept of quasi-convexity.

5.3 Quasi-convexity

For heterogeneous deformation fields, a convexity condition related to the in-
tegrated energy

I :=

Z
Ω

Ψ (F (X)) dX. (5.8)

is more suitable. According to Morrey (1952); Ball (1977, 1986); Dacorogna
(2008), sufficient conditions for the existence of minimizers are sequential-
weak-lower- semicontinuity and coercivity of Ψ. Morrey (1952) has shown
that these conditions are equivalent to the quasi-convexity condition. Let
W 1,p(Ω : Rm) denotes all mappings ϕ : Ω→Rn such that

||ϕ||p + ||GRAD(ϕ)||p <∞ (5.9)



46 Chapter 5. Convex analysis

where || • ||p designates the p-norm of (•). And the subset of W 1,p(Ω : Rn)
consisting of those ϕ vanishing on the boundary ∂Ω is defined by W 1,p

0 (Ω :
Rn). Accordingly, a function Ψ is W 1,p-quasi-convex at F , if

Ψ(F (X)) ≤ 1

(meas Ω)

Z
Ω

Ψ (F (X) + GRAD(ϕ)) dX (5.10)

with

ϕ ∈W 1,p
0 (Ω : Rn) (5.11)

where (meas Ω) indicates the Lebesgue measure of Ω. In the case of p =∞ the
abbreviation quasi-convex is used instead of W 1,p-quasi-convex. The graphical
interpretation is given in Fig. 5.2 where it is shown that any perturbation in
the form of GRAD(ϕ) increases the internal energy. From Eq. (5.11) it can be
realized that the quasi-convexity is not a local condition and hence, proving
this condition is not straightforward. Although quasi-convexity is a nonlocal
condition, it is bounded between two local upper and lower limits, i.e.,

poly-convexity ⇒ quasi-convexity ⇒ rank-one-convexity, (5.12)

see Dacorogna (2008); Raoult (2010). The remaining limit being that defined
by rank-one-convexity is discussed next.

5.4 Rank-one-convexity

The development of the concept of rank-one-convexity can be motivated by
some experimental measurements in which the deformation of materials is
governed by sequential laminates. Microscopic observations revealed that the
deformation in a certain class of materials is localized within distinct regions
such as dislocation laminates in ductile crystals and martensites in shape mem-
ory alloys, see Saimoto (1963); Rasmussen & Pedersen (1980); Jin & Winter
(1984); Ball & James (1987). This laminate microstructure can be mathemat-
ically explained by a piece-wise continuous deformation field. For instance,
under a macroscopic deformation F , the material body Ω is transformed to a
collection of sequential sub-domains (Ω+

1 ∪Ω−1 ∪Ω+
2 ∪Ω−2 ∪. . . ) with microscopic

deformation fields (F+/F−/F+/F−/ . . . ), which fulfill the compatibility con-
ditions

F = λ+F+ +λ−F− and F−−F+ = (a⊗n) where {a;n} ∈ R3 (5.13)

and λ± indicate the volume fraction of each laminate. The Legendre-Hadamard
condition implies that the aforementioned laminate configuration is stable
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(with respect to the energy Ψ), if it fulfills the strong ellipticity condition.
That is, if Ψ ∈ C2,

(a⊗ n) :
∂2Ψ(F )

∂F ∂F
: (a⊗ n) =

∂2Ψ(F )

∂Fik∂Fjl
ainkajnl > 0, (5.14)

see Ball (2010). Alternatively, if the wavefront (∂Ω := Ω+ ∩Ω−) is character-
ized by n, the acoustic tensor

A = n · ∂
2Ψ(F )

∂F ∂F
· n (5.15)

must be positive definite, see Hadamard (1903). Ball (1977) showed that
the Legendre-Hadamard condition is equivalent to rank-one-convexity condi-
tion. This condition states that a function Ψ(F ) is rank-one-convex for all
rank(F− − F+) ≤ 1 if it satisfies Eq. (5.1).

5.5 Convex hulls

The governing laws of many physical problems are realized by non-convex func-
tions and thus, the existence of solutions can not be expected in the classical
sense, cf. Ortiz & Repetto (1999); Carstensen et al. (2002); Miehe & Lam-
brecht (2003). However, a solution can often nevertheless be accommodated
by convex envelops (Dacorogna (2008)) as

• Convex hull

CΨ = sup
n

Ψ̃ : Ψ̃ ≤ Ψ and Ψ̃ convex
o

(5.16)

• Poly-convex hull

PΨ = sup
n

Ψ̃ : Ψ̃ ≤ Ψ and Ψ̃ poly-convex
o

(5.17)

• Quasi-convex hull

QΨ = sup
n

Ψ̃ : Ψ̃ ≤ Ψ and Ψ̃ quasi-convex
o

(5.18)

• Rank-one-convex hull

RΨ = sup
n

Ψ̃ : Ψ̃ ≤ Ψ and Ψ̃ rank-one-convex
o
. (5.19)

One can define the aforementioned hulls alternatively as
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• Convex hull

CΨ(F ) = inf

(
nX
i=1

λ{i}Ψ(F {i})

˛̨̨̨
˛λ{i},F {i};λ{i} ∈ [0, 1]

nX
i=1

λ{i} = 1,

nX
i=1

λ{i}F {i} = F

) (5.20)

• Poly-convex hull

PΨ(F ) = inf

(
nX
i=1

λ{i}Ψ(F {i})

˛̨̨̨
˛λ{i},F {i};λ{i} ∈ [0, 1]

nX
i=1

λ{i} = 1,

nX
i=1

λ{i}F {i} = F ,

nX
i=1

λ{i}CofF {i} = CofF ,

nX
i=1

λ{i} detF {i} = detF

) (5.21)

• Quasi-convex hull

QΨ(F ) = inf

(
1

(meas Ω)

Z
Ω

Ψ (F + GRAD(ϕ)) dX

˛̨̨̨
˛ϕ;

ϕ ∈W 1,∞
0 (Ω : Rn)

) (5.22)

• Rank-one-convex hull

R̃Ψ(F ) = inf

(
(1− λ)Ψ(F+) + (λ)Ψ(F−)

˛̨̨̨
˛λ, {F+;F−};

λ ∈ [0, 1], (1− λ)F+ + (λ)F− = F ,

rank(F− − F+) ≤ 1

)
.

(5.23)

It is worth mentioning that the rank-one-convex hull (R̃Ψ) has been widely
used to study the formation of microstructures. For instance, phase transitions
such as the formation of a martensite, twinning (Ericksen, 1979; James, 1981;
Ball & James, 1987; Bhattacharya et al., 1997; Mueller, 1999; Mielke, 2004;
Kochmann & Le, 2009) and dislocation microstructures in ductile crystals
(Ortiz & Repetto, 1999; Carstensen et al., 2002; Miehe & Lambrecht, 2003)
have been explained by using a rank-one-convex energy potential. In these
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works, λ and {F−;F+} are interpreted as being the volume fraction and
the deformation gradients of two neighboring phases satisfying the Hadamard
compatibility condition at the interface (Eq. (5.13)).
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6 Modeling of twinning: solid-solid phase
transition

In the previous section, constitutive models suitable for the analysis of dis-
location slip were briefly discussed and reformulated within a variationally
consistent framework. In the present section, focus is on the solid-solid phase
transitions associated with deformation-induced twinning. In line with the
previous subsection and for the sake of consistency, the aforementioned phase
transition is assumed to be governed by energy minimization, i.e., a twin
forms, if this is energetically favorable. While twinning is considered as a
certain rank-one convexification in Subsection 6.1, a computationally more ef-
ficient approach is elaborated in Subsection 6.2. It is based on decomposing
the deformation induced by twinning into a shear strain and the reorientation
of the crystal lattice.

6.1 Modeling twinning by rank-one convexification

Twinning is characterized by a laminate structure, cf. James (1981). A pow-
erful mathematical tool for analyzing such problems is provided by the con-
cept of rank-one convexification, cf. Carstensen et al. (2002). Within this
concept, the energy of a solid is further minimized by allowing for certain
phase-decompositions (microstructures). Continuity of the sub-deformations
is guaranteed by enforcing a Hadamard-type (Ball & James, 1987) compatibil-
ity condition between the deformation gradients within the different phases.

6.1.1 Kinematics

A twin ∂Ω− partitions the initial domain Ω ⊂ R3 into the sub-bodies Ω+ and
Ω−, i.e., Ω = Ω+ ∪Ω− ∪ ∂Ω−. While the crystal lattice in Ω+ is equivalent to
that in Ω, the simple shear parallel to the twin plane ∂Ω− changes the crystal
lattice in Ω−. Such a transformation can be described by a proper orthogonal
tensor R. More precisely, denoting the lattice vectors of the initial phase as
e := {e1, e2, e3} and those corresponding to the twinned configuration as ẽ,
the transformation

ẽ = R · e (6.1)

51
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Figure 6.1: Lattice rotation associated with deformation-induced twinning

holds, see Fig. 6.1. With n being the normal vector of the twin interface, R
is defined by

R = −I + 2(n⊗ n) with detR = 1, (6.2)

see Pitteri (1985). Commonly observed microstructures suggest that twinning
occurs with laminate topology. Here, a first-order approximation is consid-
ered. More precisely and following James (1981); Ortiz & Repetto (1999);
Carstensen et al. (2002), the deformation gradient F+ associated with the
initial phase Ω+ and F− belonging to Ω− are decomposed according to

F− = F+ − λTwin(a⊗ n). (6.3)

For guaranteeing a resulting physically reasonable macroscopic strain, the ad-
ditional compatibility conditions

F = ξ+F+ + ξ−F− (6.4)

and

ξ+ + ξ− = 1 (6.5)

are enforced, see Silhavy (1997). Henceforth, the subscript (−) is omitted
from ξ−, i.e., ξ denotes the volume fraction of the twinning phase. As evident
from Eq. (6.3), the rank-one deformation tensor λTwin(a ⊗ n) defines the
deformation jump across the twinning interface. In this connection, the normal
vector n corresponds to the twinning plane (interface), while a and λTwin

define the jump direction and the amplitude of the shear deformation. In
contrast to conventional rank-one convexification (Carstensen et al., 2002),
the direction and the amplitude of the twinning shear are a priori prescribed
by the respective lattice structure. For instance, in case of magnesium tensile
twinning (a := 〈101̄1〉,n := {1̄012}), it is obtained as λTwin = f(c/a), see
Christian & Mahajan (1995).

Remark 9 In general, deformation-induced twinning can occur successively
by several twinning variants. In this case, the aforementioned phase decompo-
sition has to be considered several times. However, within the present chapter,
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only first-order laminates will be modeled. Since the resulting approach predicts
the mechanical response of magnesium single crystal very well, computationally
more expensive higher-order approximations will not be analyzed here.

6.1.2 Energy

According to the previous section, the presence of twin laminates induces de-
formation fluctuations in the initial phase. More precisely, the deformation
gradient decomposes as stated in Eq. (6.3). Consequently, the Helmholtz en-
ergy of the whole solid can be described by a volume averaging of the energies
associated with each phase, i.e.,

ΨC(C,F+p
,λ+,F−

p
,λ−, ξ) = (1− ξ)Ψ+(C+e

,λ+)

+ ξ Ψ−(C−
e
,λ−) + Ψmix(ξ).

(6.6)

In Eq. (6.6), an additional mixture energy Ψmix has been introduced. It pri-
marily depends on the coherency of the neighboring phases in the vicinity of
the interface. It vanishes in case of unconstrained twinning, e.g., Fig. 6.1. The
purpose of this mixture energy is two-fold. First, as mentioned before, it al-
lows to include interface effects, i.e., it leads to a physically more sound model.
Second, by choosing different energies, different approximations of phase tran-
sition can be analyzed within a unique framework. For instance, by choosing

Ψmix =


0 ∀ξ ∈ {0; 1}
∞ ∀ξ ∈ (0, 1)

(6.7)

a classical Taylor-type approximation is obtained, i.e., either phase Ω+ or Ω−

will be active. A mixture state cannot occur, if energy minimization is the
overriding principle. Clearly, by neglecting the mixture energy, the rank-one
convexification method is obtained. It represents a lower bound of the energy,
i.e.,

inf
ξ

ΨC ≤ Ψ. (6.8)

Remark 10 In the present subsection, the concept of rank-one convexifica-
tion has been briefly discussed. Although only the Helmholtz energy has been
considered, the same concept can also be applied to the dissipation or to the in-
crementally defined potential associated with variational constitutive updates,
cf. Subsection 4.3. For the sake of understandability, dissipative effects have
been excluded here. However, the final model combining deformation-induced
twinning and dislocation slip will show such features.
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6.1.3 Effect of mixture energy on phase transition

The mixture energy Ψmix in Eq. (6.6) governs implicitly the phase transition
induced by deformation-induced twinning. By using a simple prototype model,
this effect is analyzed here. For the sake of simplicity, it is assumed that
the initial and the twinning phase are dislocation-free and further dissipative
processes are also excluded (fully reversible model). The more general case,
including dissipation of energy will be discussed later. With these assumptions
and adopting a St. Venant material model, the Helmholtz energy of the initial
phase is given by

Ψ+(E+) =
1

2
E+ : K+ : E+ (6.9)

where E+ = 1
2
(F+T ·F+−I) is the Green-Lagrange strain tensor and K+ de-

notes the fourth-order elastic stiffness tensor. It is supposed that the material
shows twinning at the system determined by {a := {011̄1},n := {01̄12}}. Ac-
cordingly, the twinning shear strain ETwin which defines the stress free state
of the twinning phase is obtained by

ETwin =
1

2
(FT

Twin · FTwin − I) (6.10)

with

FTwin = I + λTwin(a⊗ n). (6.11)

Since the material properties of both phases are similar, the elastic strain
energy of the twinning phase can be derived from that of the initial phase
simply by translating the stress-free state. More explicitly, the energy of the
new phase reads

Ψ−(E−) =
1

2
(E− −ETwin) : K− : (E− −ETwin) + α. (6.12)

Here, the scalar-valued parameter α corresponds to the thermal activation
energy of twinning which is taken as a constant. Following the previous sub-
section, the total energy obtained by volume averaging is thus given by

Ψ = (1− ξ)Ψ+(E+) + ξ Ψ−(E−) + Ψmix(ξ). (6.13)

Consequently, by considering the Hadamard-type compatibility condition Eq.
(6.3) and taking into account that the vectors a, n as well as the shear strain
λTwin are a priori known from crystallographic information, the energy Ψ de-
pends only on the macroscopic deformation gradient as well as on the unknown
volume fraction ξ, i.e.,

Ψ = Ψ(F , ξ). (6.14)
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Function label a b c f

Boxcar 0.99 0.01 1000 1

GaussA 0.70 0.30 15 1

GaussB 0.60 0.40 10 1

Coh 0.45 0.55 1000 1

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0

1
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Ψ
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ix
/µ Coh
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Boxcar

Figure 6.2: Mixture energies (6.15) as a function of the twinning volume frac-
tion ξ

Despite the fact that several parameters such as the laminate morphology,
chemical composition, temperature and dislocation structures have determin-
istic effects on the mixture energy Ψmix, a simplified model of the type

Ψmix(ξ) =
fµ

(1 + exp[c(ξ − a)])(1 + exp[−c(ξ − b)]) , (6.15)

solely depending on the current twinning volume fraction ξ is adopted. In
Eq. (6.15), µ is the elastic shear modulus and {a, b, c, f} is a set of ad-
justable scalar shape function parameters defining the mixture energy Ψmix,
see Fig. 6.2. In case of a fully coherent interface not showing any residual
stresses, the mixture energy ”Coh” is set to zero. The other limiting case
is the Boxcar-type function. It describes a highly incoherent interface. De-
pending on the shear modulus, this function is a good approximation of the
classical Taylor-type homogenization. More precisely, if energy minimization
is the overriding principle and µ is large enough, phase mixture cannot occur.

The prototype model discussed before is subjected to a shear strain

F = I + ε(a⊗ n) (6.16)

parallel to the twinning plane. Here, ε denotes the loading amplitude. Sub-
sequently, the stable state of the system is obtained by minimizing the total
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energy, i.e.,

inf
ξ

Ψ(ε, ξ). (6.17)

The resulting energies are summarized in Fig. 6.3 (top). There, the thin lines
correspond to the energies of the single phases. The evolution of the computed
volume ratio ξ is shown in Fig. 6.3 (bottom). As expected, the interface energy
strongly governs the phase transition. In the case of a coherent interface, the
total energy is identical to the rank-one convex hull which results in a linear
evolution of the twinning volume fraction. By way of contrast, the Boxcar
mixture energy leads to a Taylor-type phase transition. The Gaussian mixture
energies range between the aforementioned limiting cases.

Certainly, although the energy governs phase transition within the presented
model, this physical quantity cannot be measured in experiments. For this
reason, the stress response is analyzed as well. Fig. 6.4 summarizes the re-
spective diagrams. Since the considered deformations are comparably small,
the stress-strain diagrams are piecewise linear.

In case of coherent phases (Fig. 6.4(f)), a classical stress plateau can be seen,
i.e., the stress increases linearly except for within the transition range ξ ∈
(0, 1). By way of contrast, for the other limiting case, being the Boxcar-type
mixture energy, a Taylor transition is observed. More precisely, the stress-
strain diagram is discontinuous and shows a jump at the transition point.
Experimental evidence of such a behavior can be found, e.g., in Salje et al.
(2009); Harrison et al. (2004). However, considering sufficiently large samples
of single crystal magnesium, a continuous stress-strain response is expected.
Hence, the Taylor-type model, although computationally very efficient cannot
be utilized. The opposite is true for the coherent case being identical to a rank-
one convexification: It leads to physically sound results, but it is numerically
very expensive. For this reason, an approximation combining the advantages
of these limiting cases will be elaborated in the next subsection.

6.2 Approximation of the solid-solid phase transition induced
by twinning

Although the modeling of a solid-solid phase transition by means of the concept
of rank-one convexification is physically sound, its application to complex sys-
tems showing dislocation slip and deformation-induced twinning is numerically
very expensive (in case of magnesium, the interplay between twelve disloca-
tion systems and six different twinning modes has to be considered). More
precisely, the respective computational costs corresponding to the numerical
analysis of a polycrystal would be prohibitive. Therefore, an approximation of
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the rank-one convexification method which is significantly more efficient will
be elaborated here.

6.2.1 Fundamentals

The underlying idea of the proposed model suitable for the analysis of solid-
solid phase transition originates from experimental observations (Barber &
Wenk, 1979; Terlinde & Luetjering, 1982; Chia et al., 2005; Li & Ma, 2009).
According to the cited works, experiments show that the width of a twin lam-
inate has to be large enough to allow for dislocation slip inside this laminate.
Consequently, observable plastic deformations within the twin require a suffi-
cient twin volume. This phenomenon is strongly pronounced, particularly, in
the case of magnesium with a very low twinning activation energy.

The aforementioned experimental observations suggest to decompose twinning
into two stages. Within the first of those, the twin laminate is compara-
bly small and hence, plastic deformations within the reoriented phase can be
neglected. If the twin volume reaches a critical threshold, the slip systems
corresponding to the reoriented crystal lattice may become active. For mod-
eling the first stage, the concept of pseudo-dislocation is utilized, cf. Chin
(1975). Hence, instead of computing the twin volume explicitly, the shear
strain caused by twinning is considered. If this shear strain equals the twin-
ning strain (unconstrained twinning), the crystal lattice is reoriented. For the
sake of computationally efficiency, the reorientation is applied to the whole
underlying representative volume. Consequently, the deformation systems as-
sociated with the original crystal lattice may be active in the first stage, while
only the systems related to the reoriented crystal are considered in the second
stage.

Accounting for standard dislocation slip (ς(a)) as well as for the aforementioned

pseudo-dislocation-related slip (ς
(j)
pd ) caused by twinning within the first trans-

formation stage, yields a plastic velocity gradient of the type

lp =

nX
a=1

ς(a) sign[Σ : N (a)] N (a) +

mX
j=1

ς
(j)
pd sign[Σ : N

(j)
pd ] N

(j)
pd (6.18)

with

N
(j)
pd = a(j) ⊗ n(j). (6.19)

Accordingly, the slip caused by pseudo-dislocations is assumed to be governed
by a standard Schmid-type law. Further extending this analogy, the Helmholtz
energy describing the initial (not twinned) phase is chosen as

Ψ+(Ce,λ,λpd) = Ψe(Ce) + Ψp(λ) + Ψp
pd(λpd). (6.20)



6.2. Approximation of the solid-solid phase transition induced by twinning 59

Here, λ
(i)
pd are internal variables associated with the pseudo-dislocation (λ̇

(i)
pd =

ς
(i)
pd ). Once the critical twinning strain is reached, the energy of the reoriented

phase is active. Since the original and the twinned domain show the same
mechanical properties (except for the orientation of the crystal lattice), the
Helmholtz energy of the reoriented phase reads

Ψ−(Ce,λ) = Ψe(Ce) + Ψp(λ). (6.21)

Having defined the Helmholtz energies of the different phases, the total energy
can be computed in a standard manner. In line with the previous subsections,
it is given by

Ψ(Ce,λ,λpd,λ
−, ξ) = (1− ξ)Ψ+(Ce,λ,λpd)

+ ξ Ψ−(C−
e
,λ−) + Ψmix(ξ), ∀ξ ∈ {0; 1}.

(6.22)

Although Eq. (6.22) looks formally identical to Eq. (6.6), both models are sig-
nificantly different. While a continuous evolution for ξ is considered within the
framework provided by the rank-one convexification, the novel approximation
is based on a discontinuous transition, i.e., ξ ∈ {0; 1}. Clearly, the mixture
energy can thus be neglected and consequently, a minimization of Eq. (6.22)
w.r.t. ξ simplifies to

inf
ξ∈{0;1}

Ψ(Ce,λ,λpd,λ
−, ξ) = min[ Ψ+(Ce,λ,λpd), Ψ−(C−

e
,λ−)]. (6.23)

Remark 11 During the first stage in which twinning is described by the con-
cept of pseudo-dislocation, the elastic energy of the reoriented phase has been
neglected. Such an approximation is admissible, since the elastic deformations
are comparably small in magnesium. However, the more general case is also
included in the framework as discussed here.

Remark 12 As mentioned before, it is completely unknown for complex load-
ing conditions, whether the twinned domain inherits the dislocations corre-
sponding to the initial phase, or if only a certain part of them is transferred.
Therefore and focusing on the model presented here, it is not clear which initial
conditions are to be chosen for λ−. Within the present thesis, the final values
of λ serve as initializers of λ−. Hence, it is assumed that the whole dislocation
history is kept.

Remark 13 Within the presented model, phase transition occurs, if the slip
caused by pseudo-dislocations reaches a certain threshold. In this respect, the
transformation is strain-based. However, by choosing Ψp

pd(λpd) properly, an
equivalent energy depending criterion can be derived. Such a criterion will be
elaborated for the final model.
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Remark 14 Although only the Helmholtz energy has been considered within
the present subsection, the discussed ideas can also be applied to the dissipa-
tion and the stress power. Accordingly, the final model will capture dissipative
effects as well.

6.2.2 Illustrative examples

In this subsection, the characteristics of the novel phase transition model as
discussed in the previous subsection are illustrated. It will be shown that
this model combines the advantages of a classical Taylor-type approximation
and the computationally more expensive concept of rank-one convexification.
More precisely, the continuous stress-strain response as predicted by the model
is in line with that of the rank-one convexification, while it is as efficient
as the Taylor-type model. First, a fully reversible prototype is considered.
Subsequently, dissipative effects are considered as well.

6.2.2.1 Prototype model

The mechanical prototype model analyzed here is in line with that previously
discussed in Subsection 6.1.3. The sole difference is that pseudo-dislocation slip
caused by twinning is already considered within the initial phase. Accordingly,
the plastic deformations in the initial phase are described by

F+p
= I + λpd(a⊗ n) (6.24)

with λpd being the magnitude of the PD’s plastic shear. With Eq. (6.24) and
assuming the St. Venant model, the stored energy of the initial phase is given
by

Ψ+(E+, λpd) =
1

2
(E+ −E+p

) : K+ : (E+ −E+p
) + Ψp

pd(λpd) (6.25)

with E+ = 1/2(F+T ·F+−1) and E+p
= 1/2(F+pT ·F+p−1) being the total

Green-Lagrange strain tensor and its plastic part. The model is completed by
assuming a suitable energy Ψp

pd(λpd). Here, the choice

Ψp
pd(λpd) = β λpd + Π(λpd) (6.26)

is made. In Eq. (6.26), Π(λpd) can be understood as a penalty function
guaranteeing that the plastic shear of PD-twinning is properly bounded, i.e.,
λpd ∈ [0, λTwin]. This can be realized by defining

Π(λpd) :=


0 if λpd ∈ [0, λTwin)
∞ if λpd ≥ λTwin

(6.27)



6.2. Approximation of the solid-solid phase transition induced by twinning 61

Consequently, if energy minimization is the overriding principle, the second
phase is energetically more favorable, if the PD-twinning strain λpd approaches
the threshold λTwin. In this respect, Π(λpd) defines an energy-based transfor-
mation condition.

Having discussed the second term in Eq. (6.26), the linear summand β λpd

remains to be explained. Although the Helmholtz energy is addressed here, this
terms looks formally identical to the dissipation (product of plastic multiplier
and the yield strength). According to Eq. (6.27), Ψp

pd(λpd) = β λpd for λpd ∈
[0, λTwin). Consequently, no additional hardening is active within the first
stage. As a result, the Helmholtz energy can be decomposed in this case
into a standard elastic part and a dissipation-like term. Hence, the predicted
mechanical response is expected to be similar to that of perfect plasticity, i.e.,
the model will show a stress plateau within the interval λpd ∈ [0, λTwin).

6.2.2.2 Non-dissipative process

In this section, a fully reversible process is analyzed. More precisely, the
model introduced within the previous section is utilized. The only difference
compared to the model employed in Subsection 6.1.3 is that the PD-twinning
system is included within the initial phase and a Boxcar mixture energy is
considered for enforcing a Taylor-type approximation, see Fig. 6.2. Hence,
and in line with Eq. (6.17), the minimization problem to be solved reads

inf
λpd,ξ

Ψ(ε, λpd, ξ). (6.28)

As evident, the slip caused by PD-twinning represents an additional unknown
variable within optimization problem (6.28). Fig. 6.4(j) shows the minimizer
of the total energy in terms of the prescribed strain amplitude. Accordingly,
although the transition of the volume fraction ξ is approximated in a discon-
tinuous fashion (see Fig. 6.4(k)), the resulting energy evolution is continuous.
Consequently, PD-twinning leads to a smoothing of the energy and thus, to a
continuous stress-strain diagram (see Fig. 6.4(l)). More precisely, the stress-
strain diagram is piecewise linear (comparably small deformations) and shows
a plateau. This is a direct consequence of the term β λpd included within Ψp.

A more careful comparison reveals that the energy response as well as that of
the stresses predicted by the advocated model are in excellent agreement with
those corresponding to the computationally more expensive rank-one convex-
ification method (cf. Fig. 6.4(d) and Fig. 6.4(f)). However, the evolution of
the volume fraction ξ is discontinuous as seen for the Taylor-type approxima-
tion (see Fig. 6.4(h)). As a result, the presented model combines indeed the
advantages of the aforementioned limiting cases.
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Figure 6.4: Fully reversible prototype model: Illustration of different phase
transition models: energy evolution (top row); evolution of the twinning
volume fraction (middle row); resulting stress-strain response (bottom row).
Thick lines show the resulting minimum energy, while thin lines are associated
with the single phases.
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Figure 6.5: Prototype model including dissipation: a) incremental minimizers
of Iinc (see Eq. (6.30)), b) stored energy corresponding to each phase, c) stress-
strain diagram

6.2.2.3 Dissipative process

Although the example discussed in the previous subsection illustrated the
characteristics of the proposed phase transition model, deformation-induced
twinning cannot be considered as fully reversible. Hence, dissipative mech-
anisms are additionally considered. Consequently, the Helmholtz energy in
Eq. (6.28) is replaced by the incrementally defined integrated stress power, see
Section 4.3.1. More explicitly, the integrated stress power of the initial phase
and that of the twinned phase are given by

I+(ε,∆λpd) = Ψ+|n+1(ε,∆λpd)−Ψ+|n +A ∆λpd

I−(ε) = Ψ−|n+1(ε) −Ψ−|n.
(6.29)

Here, A ∆λpd = ∆D is the dissipation integrated over the time interval
[tn; tn+1] and A is an additional material parameter governing the dissipa-
tion amplitude. With Eqs. (6.29), the resulting energy is computed from the
(discrete) minimization problem

Iinc(ε) = min{ inf
∆λpd

I+; I−}. (6.30)

Fig. 6.5a shows the evolution of Iinc as a function of the applied strain ε.
During the first stage, PD-twinning is active resulting in a vanishing energy
Iinc. When the threshold value λTwin is reached, the phase showing the new
orientation becomes energetically more favorable yielding an increasing en-
ergy. The same holds for the Helmholtz energy. The computed stress-strain
response is depicted in Fig. 6.5c. Accordingly, the stress diagram shows a
plateau until the threshold value λTwin is reached and the crystal is reori-
ented. Subsequently, the stresses increase linearly (small deformations). In
summary, the mechanical response predicted by the novel model is again in
excellent agreement with that of the computationally more expensive rank-one
convexification method.
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6.3 Numerical implementation - variational constitutive
update

In this section, the numerical implementation of the proposed model suit-
able for the analysis of deformation-induced twinning coupled to plastic slip
is summarized. Its calibration, together with the choice of admissible hard-
ening evolution laws, will be described in Chapter 7. First, the Helmholtz
energies Ψ = Ψe + Ψp describing the initial phase and the reoriented phase
are explained. Subsequently, the dissipation functionals are introduced. This
section is completed by the numerical implementation.

The elastic response of magnesium within the initial and the reoriented phase
is approximated by means of a neo-Hookean model (Eq. (4.9)). Since the
macroscopic anisotropy is not pronounced, an isotropic model such as that
defined by Eq. (4.9) represents a suitable choice. Furthermore, the elastic
deformations in magnesium are comparatively small and consequently, the
elastic material model does not influence the results significantly.

The opposite is true for the plastic deformations. Taking 12 slip systems and 6
PD-twinning systems into account, the part of the Helmholtz energy associated
with plastic work is assumed as

Ψp = Ψp
self + Ψp

lat + Ψp
pd. (6.31)

Here, Ψp
self and Ψp

lat describe latent and self hardening of the slip systems,
while Ψp

pd is related to PD-twinning. This decomposition, together with the
classical Schmid-type yield functions (4.20), results in the dissipation term

D =

12X
i=1

Σ
(a)
0 ς(a) +

6X
i=1

Σ
(a)
pd 0

ς
(a)
pd ≥ 0. (6.32)

Again, the first part governs the standard slip systems, while the second part
is associated with PD-twinning. Integration of the stress power (P = Ψ̇ +D)
yields finally the incrementally defined functional

I
(α)
inc = Ψ|n+1 −Ψ|n +

12X
i=1

Σ
(a)
0 ∆ς(a) +

6X
i=1

Σ
(a)
pd 0

∆ς
(a)
pd . (6.33)

Here, α ∈ {ini; Tw}. Hence, the same incremental energy is used for the initial
as well as for the reoriented phase. However, the crystal lattice orientation of
both phases and the internal variables are, of course, not necessarily identical.
For computing energy (7.5), the underlying evolution equations are again in-
tegrated by the implicit scheme (4.32). Finally, the stress power of the crystal
can be determined from the discrete minimization

Iinc = min{inf I ini
inc; inf Iinc

−}. (6.34)
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In this connection, the optimization problems inf I
(α)
inc depending on ∆ς(a) and

∆ς
(a)
pd have to be solved for a given strain. Based on Eq. (6.34), the first

Piola-Kirchhoff stress tensor P can be computed in a standard manner, i.e.,
P = ∂F Iinc.



7 Calibration of the variational model

The application of numerical models requires the calibration of the correspond-
ing material parameters. In principle, they can be determined by a standard
optimization procedure in which the error between the experimentally ob-
served response and the prediction by the model is minimized. However, since
the number of material parameters is large (12 slip systems, 6 PD-twinning
systems, latent hardening, etc.), it is more promising to separate the differ-
ent deformation modes. One possible experimental setup for achieving this is
provided by the channel die test, cf. Kelley & Hosford (1968).

7.1 Experimental measurements

Tab. 7.1 summarizes the reported experimentally measured values of critical
resolved shear stresses. It can be inferred from Tab. 7.1 and also from the
yield points in Fig. 2.12 that the active deformation systems (basal and tensile
twinning) are not coplanar. This implies that during an ideally arranged
channel die test, punching the sample does not stimulate two highly active
deformation systems simultaneously. Moreover, tensile twinning has a polar
characteristic and is active only at tensile loading along the c-axis. Since the
resolved shear stresses on basal and prismatic deformation systems are zero
for sample A (Fig. 2.13), the only active deformation system is pyramidal.
However, Kelley and Hosford (Kelley & Hosford (1968)) observed traces of the
basal dislocation system and related it to an imperfection of the sample which
is generated during preparation. By the same analogy, deformation in sample
C reduces to prismatic slip, E to the tensile twinning (as well as post twinning
pyramidal) and G to the basal slip system.

7.2 Identification of the material parameters

In this section, the channel die test is formulated as an initial boundary value
problem based on which the material parameters of the proposed variational
model are identified by a standard least squares method.

67
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Table 7.1: Reported critical resolved shear stresses for the deformation systems
of magnesium single crystal at room temperature.

Basal Prismatic Pyramidal Twinning
[MPa] [MPa] [MPa] [MPa]

Burke (1952) 0.45
Kelley & Hosford (1968) 0.48

Reed-Hill & Robertson (1957a) 2
Obara et al. (1973) 30-50

Reed-Hill & Robertson (1957b) 39.3

7.2.1 Boundary condition

In order to simulate the channel die test, an approximated deformation of the
type

F = I − ε(e3 ⊗ e3) + ε̃(e1 ⊗ e1), (7.1)

is considered where ε and ε̃ characterize the compression and extension strain
in the punching direction (e3) and the channel direction (e1).

7.2.2 Elasticity model

The elastic response of magnesium within the initial and the reoriented phase
is approximated by means of a neo-Hooke model of the type

Ψe(Ce) =
λE

2
(ln(Je))2 − µ ln(Je) +

µ

2
(tr(Ce)− 3), (7.2)

where Je is the determinant of the elastic deformation gradient and {λE, µ} are
the Lamé constants. Since the macroscopic anisotropy is not pronounced, an
isotropic model such as that defined by Eq. (7.2) represents a suitable choice.
Furthermore, the elastic deformation in magnesium is comparatively small and
hence, elastic material model does not influence the results significantly.

7.2.3 Plasticity model

The variational crystal plasticity model (Section 4.3) is taken into account.
The part of the Helmholtz energy associated with plastic work is assumed as

Ψp = Ψp
self + Ψp

lat + Ψp
pd. (7.3)
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Here, Ψp
self and Ψp

lat describe latent and self hardening of the slip systems,
while Ψp

pd is related to PD-twinning. This decomposition, together with the
classical Schmid-type yield functions (4.20), results in the dissipation

D =

12X
i=1

Σ
(a)
0 ς(a) +

6X
i=1

Σ
(a)
pd 0

ς
(a)
pd ≥ 0. (7.4)

Here, the first part governs the standard slip systems, while the second part
is associated with PD-twinning. Integration of the stress power (P = Ψ̇ +D)
yields finally the incrementally defined functional

Iinc = Ψ|n+1 −Ψ|n +

12X
i=1

Σ
(a)
0 ∆ς(a) +

6X
i=1

Σ
(a)
pd 0

∆ς
(a)
pd . (7.5)

Hence, the same incremental energy is used for the initial as well as for the
reoriented phase. However, the crystal lattice orientation of both phases and
the internal variables are, of course, not necessarily identical. For comput-
ing energy (7.5), the underlying evolution equations are again integrated by
the implicit scheme (4.32). Finally, the stress power of the crystal can be
determined from the discrete minimization

Iinc = min{inf I
+

inc; inf I
−
inc}. (7.6)

In this connection, the optimization problems inf I
(α)
inc depending on ∆ς(a)

and ∆ς
(a)
pd have to be solved for a given strain. Based on Eq. (7.6), the first

Piola-Kirchhoff stress tensor P can be computed in standard manner, i.e.,
P = ∂F Iinc.

7.2.3.1 Sets of deformation systems

The crystal symmetry and the constrained loading conditions reduce the num-
ber of potentially active slip systems in each sample. More precisely, the fol-
lowing deformation modes are assumed to be active:

• Sample A: pyramidal slip systems {[21̄1̄3̄](21̄1̄2) , [21̄1̄3](2̄112)}

• Sample C: prismatic slip systems {[12̄10](101̄0) , [112̄0](11̄00)}

• Sample E:

– Initial phase: PD-twinning {[011̄1](01̄12) , [01̄11](011̄2)}
– Twinning phase: pyramidal slip systems {[112̄3̄](112̄2) , [1̄2̄1̄3̄](1̄2̄1̄2)

, [1̄1̄23̄](1̄1̄22) , [12̄13̄](12̄12)}

• Sample G: basal slip systems [011̄0](0001)
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Pairs of energetically equivalent slip systems result in a pure stretching plastic
deformation for samples A, C and E. By way of contrast, only one deformation
system is potentially active in sample G resulting in a lattice rotation. Fig. 7.1
gives an illustration of the geometrical relation between the channel die test
and the micromechanical deformation systems of each sample.

7.2.3.2 Hardening models

The results of the channel die experiments (see Kelley & Hosford (1968)) sug-
gest that the mechanical response of prismatic and pyramidal slip systems can
be approximated by an exponential hardening law, while only slight hardening
effects have been observed for the basal and the PD-twinning systems. Hence,
their hardening response is assumed as linear with comparably small moduli.
To guarantee a physically sound phase transition, the hardening law corre-
sponding to PD-twinning is superposed by an additional function converging
to infinity, if the critical transformation strain λTwin is reached. In summary,
self-hardening is approximated by

Q
(a)
self =

∂Ψp
self

∂λ(a)
=

8><>:
h0 λ

(a) Basal

Σ∞(1− exp(−h0λ
(a)/Σ∞)) Prismatic and Pyramidal

h0(λ(a) + ( λ(a)

λTwin
)m) PD− twinning

(7.7)

where h0, m, Σ0 and Σ∞ are material parameters, while m >> 1 is a numerical
parameter smoothing the discrete phase transition. The resulting hardening
functions are depicted in Fig. 7.2. The hardening response is completed by
assuming a linear latent hardening model of the type

Ψp
lat =

1

2
λ · l · λ. (7.8)

Its resulting moduli are constant and given by

lab :=
∂2Ψp

lat

∂λ(a)∂λ(b)
. (7.9)

By comparing the experimentally observed mechanical response to the respec-
tive predictions by the model, the set of material parameters as summarized
in Tab. 7.2 was found.

7.2.4 Comparison between experimental observations and
predictions by the model

The results as computed by applying the variationally consistent method de-
scribed in Subsection 6.3, together with the respective experimental observa-
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Figure 7.1: Crystallographic representation of active deformation systems in
an ideally performed channel die test. Orientations A-G are analogous to those
tested by Kelley and Hosford (Kelley & Hosford (1968)). Glide planes of active
dislocations in each sample are illustrated by gray color and the directions are
shown by red arrows
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Figure 7.2: Self hardening of the different deformation systems in magnesium

Table 7.2: Material parameters used in the numerical analysis

Elastic Properties λ = 34(GPa) µ =17 (GPa)

Hardening parameters

Σ0 (MPa) h0 (MPa) Σ∞ (MPa) m λTwin lab

Basal 0.48 10 - - - 0

Prismatic 20 9000 75 - - 20

Pyramidal 25 7100 105 - - 25

Pseudo-dislocation twinning 1 20 - 150 0.17 10

tions, are shown in Fig. 7.3.

For improving the numerical efficiency of the model, the symmetry conditions
associated with the different crystal orientations were also taken into account.
According to Fig. 7.3, the computed stress vs. strain response is in good agree-
ment with the experimentally observed results. For the PD-twinning system,
two energy wells are plotted: one for the initial phase and one for the reoriented
phase. From this figure it can be seen that the energy of the reoriented system
becomes energetically more favorable, when the critical twinning transforma-
tion strain is reached. The effect of this transition on the stresses is evident in
the respective stress vs. strain diagram. While hardening is comparably small
during the first loading stage, new slip systems are active within the reoriented
phase resulting in more pronounced hardening.
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the model predictions, denoted by ”Sim”: evolution of the incrementally de-
fined energy (top); true stresses vs. true strains (bottom).
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8 Modeling of texture evolution in a
polycrystal

In the previous chapter, the concept of pseudo-dislocation twinning was de-
veloped at the micro-scale (at the scale of a single crystal). This chapter is
devoted to analyze the behavior of a polycrystal using the proposed twinning
model. Special focus is on the texture evolution during rolling process.

8.1 Viscous approximation

The algorithm summarized in the previous chapter describes twinning and
crystal slip by means of a fully variational method. Although it is physically
sound and numerically efficient, so-called variational constitutive updates can
nowadays still not be considered as standard. By ways of contrast, implemen-
tations for standard crystal plasticity theory are available for a broad range
of different finite element programs. For this reason, an approximation of the
novel variational model is discussed here which allows to use standard visco-
plastic crystal plasticity models. A similar strategy has already been reported
earlier, e.g., in Staroselsky & Anand (2003); Forest & Parisot (2000). It bears
emphasis that the additional viscosity is not related to the material, but it
is introduced for relaxing the ill-posed problem of rate-independent crystal
plasticity theory, cf. Schmidt-Baldassari (2003).

Instead of computing the plastic multipliers ζ(a) from the consistency condition
φ̇(a) = 0, the viscous-type over-stress model

ζ̇(a) = ζ
(a)
0 〈

φ(a)(Σ,Q)

Υ
〉n (8.1)

is introduced. Here, Υ and ζ
(a)
0 are material parameters, 〈•〉 are the Macaulay

brackets and n determines the rate sensitivity, see Rice (1971); Peirce et al.
(1982). Since this viscous law is utilized here only for regularizing the rate-
independent limiting case, the admissible choice Υ = 1 and λ0 = 1 is made.
Clearly, by choosing n sufficiently large, Eq. (8.1) is a good approximation of
the rate-independent case. This is precisely, the underlying idea of the viscous-
type approximation. For dislocation slip and PD-twinning, a yield function
φ(a) of the type (4.20) is adopted. The remaining variables such as those
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defining the hardening response (Ψp) are chosen in line with those utilized
for the variational model discussed in the previous subsection. With this, the
model describing the initial phase and that corresponding to the twinned phase
are completed.

The final point to be addressed is a criterion for the phase transition. In prin-
ciple, the energy based strategy as employed within the variational method
could also be applied here. However, this would require an additional compu-
tation of the energies. Instead an equivalent strain-based criterion is employed.
As explained in Section 6.2.2.1, twinning occurs, when the PD-twinning slip
λpd reaches a critical threshold. Hence, for the advancing time step ∆t, the
final algorithm reads

et+∆t =


et if (λpd < λTwin)
(−1 + 2(n⊗ n)) · et if (λpd ≥ λTwin)

(8.2)

where the vector e determines the local material orientation, and the threshold
λTwin corresponds to the twinning-induced shear.

8.1.1 Comparison between the variationally consistent model
(Section 6.3) and its visco-plastic approximation (Section 8.1)

The numerical results reported in Chapter 7 were obtained by applying the
variationally consistent model (see Section 6.3). Here, the quality of its visco-
plastic approximation is analyzed. Particularly, the influence of the rate sen-
sitivity power n is studied. Clearly, from a physical point of view, n has to
be chosen sufficiently large. However, if n is too large, numerical problems
can occur. The results for different rate sensitivity powers are summarized in
Fig. 8.1. According to Fig. 8.1, n = 100 approximates the rate-independent
case sufficiently accurately by not causing any numerical problems. Therefore,
n = 100 seems to be a promising choice.

8.2 Texture evolution in a polycrystal

Having discussed the presented crystal plasticity model in detail, its applica-
tion to the analysis of a polycrystal is investigated here. More precisely, the
texture evolution of a polycrystal during a rolling process is considered. For
that purpose, a representative volume element (RVE) consisting of 8×8×8 =
512 eight-noded linear 3D hexahedron elements with 8 integration points is
considered. In line with computational homogenization theory (see Miehe
(2002)), periodic boundary conditions are enforced. The prescribed macro-
scopic strain inducing certain constraints at the boundary of the RVE (see



8.2. Texture evolution in a polycrystal 79

a) 0 . 0 0 0 . 0 4 0 . 0 8 0 . 1 20

1 0 0

2 0 0

3 0 0

 

 

 

 

ε

σ
[M

P
a
] Exp

n = 1
n = 20
n = 100

RI

Sample A

b) 0 . 0 0 0 . 0 4 0 . 0 8 0 . 1 20

7 0

1 4 0

2 1 0

 ε

σ
[M

P
a
] Exp

n = 1
n = 20
n = 100

RI

Sample C

c) 0 . 0 0 0 . 0 4 0 . 0 8 0 . 1 20

1 0 0

2 0 0

3 0 0

ε

σ
[M

P
a
]

Exp
n = 1
n = 20
n = 100
RI

Sample E

d) 0 . 0 0 0 . 0 4 0 . 0 8 0 . 1 20 . 0

3 . 0

6 . 0

9 . 0

ε

σ
[M

P
a
]

Exp
n = 1
n = 20
n = 100

RI

Sample G

Figure 8.1: Channel die test: Comparison between the numerical results of the
rate-independent variational method (Section 6.3) and the over-stress visco-
plastic model (Section 8.1). n denotes the rate sensitivity power and RI de-
notes the rate-independent case (Section 6.3)
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(Miehe, 2002; Graff et al., 2007; Levesque et al., 2010)) is assumed to be plain
strain compression diagF = {ε; ε̃; 1}. The pole figure in Fig. 8.2a depicts the
initial texture with 4096=512x8 randomly distributed grain orientations which
represents the texture of an as-cast ingot, cf. (Agnew et al., 2001; Lee et al.,
2010).

The texture evolution is governed by plastic deformations as well as by twin-
ning. For the basal planes it is presented in Fig. 8.2a-c. The saturation of the
basal poles toward the compression axis implies that basal slip is very pro-
nounced. However, after 0.68 compression strain, the basal poles are inclined
about 20 degrees out of the compression axis toward the extension direction.
This is in good agreement with the results reported in Agnew et al. (2001) using
a visco-plastic self consistent approach and also cf. (Agnew & Duygulu, 2005;
Levesque et al., 2010; Proust et al., 2009; Beausir et al., 2008). The incremen-
tal activities of the different deformation systems versus the true compression
strain are depicted in Fig. 8.3.

Fig. 8.3 also includes the total volume VR = nR
512×8

of the reoriented grains,
where nR denotes the number of those grains. According to Fig. 8.3, the
contribution of basal and pyramidal slip to the total plastic deformation is
about 60%. Although PD-twinning is active during the early stages of loading,
further slip is bounded by the penalty function (Π(λpd)). Consequently, the
reoriented volume is bounded and reaches only 25% (at 0.6 compression strain).
The deformation activities of the basal slip systems are fully consistent with
the texture evolution shown in Fig. 8.2, i.e., basal slip is very pronounced.

Remark 15 From an applicational point view, the analysis of the stress-
strain-response characterizing the polycrystal is, in addition to the texture evo-
lution, also very important. Evidently, this response depends strongly on the
grain topology, e.g., the shape of the grains, cf. Lenhart (1955); Mathis et al.
(2004); Gan et al. (2009). For the simulation of the polycrystal presented
here, the material parameters as calibrated according to the channel die test
have been used. However, the topology of the grains in the channel dies test
(cubic single crystal) and that of the grains in the polycrystal are significantly
different. Therefore, the results obtained from the numerical analysis of the
polycrystal can only be interpreted in a qualitative manner. Consequently, for
a quantitative description of a polycrystal, the material parameters have to be
calibrated again for the considered grain topology.
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9 Modeling of twinning by sequential laminates

This chapter is devoted to a more detailed and physically more exact analysis
of the microstructure of deformation-induced twinning in magnesium during
a channel die test. For that purpose, several models including some capturing
a size effect are elaborated.

9.1 Introduction

For analyzing the evolution of microstructures, models based on phase trans-
formation represent a suitable choice, cf. James (1981); Ball & James (1987);
Kohn (1991); Kohn & Müller (1992); James et al. (1995); Ortiz & Repetto
(1999); Mueller (1999); James & Hane (2000); Carstensen et al. (2002); Miehe
& Lambrecht (2003); Aubry & Ortiz (2003). Within such models the total
deformation can be split into the physically most important parts by an en-
hanced multiplicative decomposition, see Boyce et al. (1992); Levitas (1998);
Idesman et al. (2000); Meggyes (2001). Although the concept of phase de-
composition and that of the enhanced multiplicative decomposition have been
extensively used for studying phase transformation, none of these models have
been developed for the irreversible deformation in magnesium.

9.2 Kinematics of twinning

In this section, the kinematics associated with deformation-induced twinning
is described in a more detailed manner (compared to the previous chapters).
In line with James (1981), the deformation between the initial phase and the
twinning phase is coupled by a Hadamard-type compatibility condition, cf.
Eq. 6.3. More precisely, twinning is considered as a certain rank-one convexifi-
cation (Ortiz & Repetto, 1999; Carstensen et al., 2002). The presented frame-
work is very general and applies also to higher-order laminates. As a matter of
fact, second-order laminate structures will be analyzed within the numerical
examples. Within each phase showing the original lattice structure, a standard
multiplicative decomposition of the deformation gradient is adopted, while an
extended decomposition is elaborated for the twinning phase. This extended
decomposition accounts for the lattice re-orientation, the shear strain induced
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84 Chapter 9. Modeling of twinning by sequential laminates

by twinning as well as for the deformation history prior to twinning. Since the
total deformation associated with the aforementioned laminate structure does
not fulfill the Hadamard compatibility condition, an additional boundary layer
is introduced. By doing so, a compatible deformation field can be constructed.

9.2.1 Deformation within the initial phase and the twinning phase

Analogously to the crystal plasticity model discussed in Section 4.2.1, a mul-
tiplicative decomposition of the deformation is adopted. Accordingly, for the
deformation of the initial phase without twinning which is highlighted by the
superscript (+) in what follows, the standard split

F+ = F e+ · F p+ (9.1)

is used. By way of contrast, additional deformation modes have to be taken
into account in the twinning phase. The first of those is the twinning-induced
shear strain a.k.a. intrinsic phase distortion, see e.g., James (1981); Mueller
(1999); Aubry et al. (2003). The respective deformation gradient reads

FTwin = I + (a⊗ n) (9.2)

with n (||n|| = 1) and a being two vectors corresponding to the twinning
plane and the shear direction. The amplitude of twinning ||a|| is related to
the type of crystal lattice. In the case of HCP metals, it is dictated by the
crystal axial ratio, i.e., ||a|| = f(c/a), see Christian & Mahajan (1995). The
second deformation mode which has also to be considered within the twinning
phase is the deformation history, e.g., the phase could have already experienced
dislocation slip before twinning. Such deformations are represented by the de-
formation gradient FHist. Combining the aforementioned deformation modes,
the deformation gradients of the different phases are decomposed according to

• Initial phase before twinning (superscript +)

F+ = F e+ · F p+ (9.3)

• New phase after twinning (superscript −)

F− = F e− · F p− · FTwin · FHist. (9.4)

Analogously to classical crystal plasticity theory, the ordering of the different
gradients in Eq. (9.4) has been chosen in line with the deformation chronology.
Clearly, even with such a motivation, many questions regarding the multi-
plicative decomposition of F are still open and controversially discussed in the
literature, see, e.g., Xiao et al. (2006) and references cited therein. However,
they are far beyond the scope of the present work. In any case, decompositions
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of the type (9.4) have already been successfully applied to a broad variety of
different mechanical problems, cf. Boyce et al. (1992); Levitas (1998); Idesman
et al. (2000); Meggyes (2001); Mosler & Bruhns (2009b).

A closer look at Eq. (9.3) and Eq. (9.4) reveals that the model has not been
completely defined yet. More precisely, the deformation gradient FHis needs
further explanation. This variable is strongly related to the interaction be-
tween already existing dislocations and twinning. Unfortunately, only little
experimental information is available, cf. Kim et al. (2009). Therefore, cer-
tain assumptions are required. One such assumption is that the deformation
history is completely reset by twinning. In this case, FHis = 1 and conse-
quently,

F− = F e− · F p− · FTwin. (9.5)

Alternatively, one could assume that the dislocation structures is not at all
affected by twinning. This implies FHis = F p+ and thus,

F− = F e− · F p− · FTwin · F p+. (9.6)

During deformation of the twinning phase, FHis = F p+ remains constant
in this case, cf. Hansen et al. (2010). In the present thesis, Eq. (9.5) is
considered, since preliminary molecular dynamical simulations are in line with
this assumption.

Remark 16 Since twinning transforms the lattice of the initial phase to a
new configuration, it can also affect the elastic properties. However, the elas-
tic anisotropy of magnesium is not very pronounced and the elastic deforma-
tion is comparably small. Thus, an isotropic constitutive model is adopted.
As a result, the elastic material parameters have been assumed as twinning
invariant.

9.2.2 Compatibility of deformation between the different phases

In the previous section, the deformation within each phase has been decom-
posed into the physically most relevant parts. However, the deformation gradi-
ents in such phases are evidently not completely independent. More precisely,
both gradients have to fulfill the compatibility condition

F− − F+ = (a⊗ n). (9.7)

of Hadamard-type, cf. James (1981). Furthermore, the volume average of
both gradients has to be identical to their macroscopic counterpart, i.e.,

F = (1− 1ξ) F
+ + 1ξ F

−. (9.8)
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Here, 1ξ = vol(Ω−)/vol(Ω) ∈ [0; 1] is the relative twinning volume and Ω :=
Ω− ∪ Ω+. A graphical interpretation of the resulting deformation implied by
Eqs. (9.7) and (9.8) is shown in Fig. 9.1. While in the upper part of Fig. 9.1 a

F−F+

F

F−F+

F

a

n

(+)(−) (−)

F− F+ F−

F+−F++
F−

+
F−

−
level 2

level 1

level 0

level 1

level 0

l +

l

l −

r−
+

r−
−

a−

n−
F+

BL

F−BL

F+
BL

F+
BL

F−BL
F−

−

F−
+

F++

F+−

F++

F+−

F−
+

F−
−

approximation

Figure 9.1: Schematic illustration of sequential laminates and their represen-
tative graph of deformation: top: rank-one laminates; middle: rank-two lami-
nates; bottom left: magnification of the boundary layer which is necessary for
a continuous deformation; bottom right: approximated boundary layer

periodic rank-one laminate is illustrated, a second-order laminate is depicted
below that figure. Interestingly, such laminates have been observed in many
materials, particularly in metals, cf. Mueller (1999); Ortiz & Repetto (1999);
Kohn (1991); Pedregal (1993); Ortiz et al. (2000) and references cited therein.
According to Fig. 9.1, twinning can be described by a binary tree structure
consisting of leaves and branch joints. Each node of the tree corresponds to
the deformation of one laminate (F+; F−), while the deformation at the joint
of two branches is associated with the volumetric average of the leaves’ defor-
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mations. The number of branching sequences defines the level of a laminate.

Remark 17 In general, deformation-induced twinning can occur successively
by several twinning variants. In this case, the aforementioned phase decompo-
sition model has to be considered several times, see Fig. 9.1. For highlighting
the laminate level, left subscripts will be used (2ξ

−). Alternatively, the number

of superscripts of F shows this level as well. Hence, F+− is a second order
laminate. More precisely, the nth index of F corresponds to the nth phase
decomposition.

9.2.3 Deformation within the boundary layer

The Hadamard compatibility conditions (9.7) and (9.8) ensure that the defor-
mation gradients associated with a rank-one laminate results from a continu-
ous deformation. As a consequence and as shown in Fig. 9.1, the respective
laminates fit perfectly together. It is well known that such a compatibility
cannot be guaranteed anymore for higher-order laminates. Even if each phase
decomposition fulfills the Hadamard compatibility conditions, the resulting
deformation is usually not rank-one compatible. This incompatibility gives
rise to the formation of boundary layers, i.e., misfits. Following Ortiz et al.
(2000), the deformation gradient within such layers can be computed as

F±BL = F± + a± ⊗ n±BL (9.9)

with

n∓BL = (2ξ
∓)

n∓ · r∓+

|r∓+|2
r∓

+ − (1− 2ξ
∓)

n∓ · r∓−

|r∓−|2
r∓
−
. (9.10)

In the present manuscript and in line with Stupkiewicz & Petryk (2002); Petryk
et al. (2003); Aubry et al. (2003); Kochmann & Le (2009), the deformation
gradient (9.9) within the boundary layer is approximated by

F±BL = F±. (9.11)

Accordingly, the wedge-shaped boundary layer (exact solution) is approxi-
mated by a parallelepiped. Evidently, Eq. (9.11) does not satisfy the Hadamard
compatibility condition between the boundary layer and the adjacent leaves.
However, if the number of laminates is sufficiently large, the difference between
Eq. (9.9) and Eq. (9.11) is negligible, i.e., both gradients converge to one an-
other. Experimental confirmation of thin boundary layers in microstructures
showing twinning can be found, e.g., in Appel & Wagner (1998); Stupkiewicz
& Petryk (2002), see Fig. (9.2).
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Figure 9.2: Twinning microstructure in Ti-Al alloy; see Appel & Wagner
(1998) (reprint with permission)

9.2.4 Example: Kinematics associated with the channel die test
(sample E)

In this section, the kinematics discussed before is specified for the channel
die test, cf. Kelley & Hosford (1968). More precisely, the sample labeled
as “E” is considered. For this sample, the twinning systems {[011̄1](01̄12),
[01̄11](011̄2)} have been observed in the respective experiments. Furthermore,
the Schmid factor of the basal system is zero and the activation energies of
prismatic and pyramidal slip are much higher than that of tensile twinning,
only tensile twinning is expected to be active. However, twinning reorients the
parent crystal lattice about 90 degrees. As a result, it leads to different Schmid
factors. For this reason, pyramidal dislocations of the type {[112̄3̄](112̄2),
[1̄2̄1̄3̄](1̄2̄1̄2), [1̄1̄23̄](1̄1̄22), [12̄13̄](12̄12)} become active within the twinning
phase.

Fig. (9.3) shows the aforementioned microstructure associated with sample
“E”. Accordingly, it corresponds to a second-order laminate. As discussed
before, the second level of such laminates is due to twinning and consequently,
the vectors n and a follow directly from crystallographic information, i.e.,
they are known in advance. By way of contrast, the amplitude of deformation
cannot be determined a priori for the laminates of first order. Thus ||a||
represents an unknown in this case, see Remark 18 on page 90.

By combining the second-order laminate structure shown in Fig. 9.3 with the
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Figure 9.3: Left: schematic illustration of rank-one twinning laminates in a
cubic single crystal sample; right: graph (tree) of the laminates’ deformations

dislocation activities, the deformations within the different phases can be de-
composed as

F++
= F e++

and F−
+

= F e−+
, (9.12)

F+− = F e+− · F p+− · FTwin〈011̄1〉{01̄12} (9.13)

and

F−
−

= F e−− · F p−− · FTwin〈01̄11〉{011̄2} . (9.14)

As a consequence and in line with experimental observations, plastic defor-
mations (dislocations) may only occur within the twinning phase. By way of
contrast, the initial crystal is fully elastic for sample “E”.

For describing nonlocal effects (size effects) related to the energy of the twin-
ning interface, the number of such interfaces is defined. Neglecting other size
effects, the thickness of the laminates is defined by

level 0 l =: Thickness of the sample (9.15)

level 1 1l
+ = (1− 1ξ)l , 1l

− = (1ξ)l (9.16)

level 2 2l
++

= (1− 2ξ
+)

1l
+

2n+
, 2l

+− = (2ξ
+)

1l
+

2n+
(9.17)

level 2 2l
−+

= (1− 2ξ
−)

1l
−

2n−
, 2l

−− = (2ξ
−)

1l
−

2n−
(9.18)
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where 2n
+ and 2n

− indicate the number of laminates of the second level. With
such definitions, the thickness of the boundary layer is obtained by using the
shear distortion of the twinning laminate (see Fig. 9.4), i.e.,

2l
+
BL =

1

2
2ξ

+ λTwin 2l
+−

2l
−
BL =

1

2
2ξ
− λTwin 2l

−−
(9.19)

and the volume fraction of the boundary layer can thus be described as a
function of the twinning volume fraction, i.e.,

2ξ
±
BL = f(2ξ

±) =
1

2
2ξ
± λTwin sin(θ)

“
2l
±−
”2 w

vol(Ω)
. (9.20)

Here, w and θ are the width of the respective sample and the angle between
the twinning interface and the rank-one laminate. According to Fig. (9.4),
the boundary layer has been considered at the center of the specimen, cf.
Kochmann & Le (2009).

Remark 18 In general, the microstructure (order of laminate and its orien-
tations), together with its induced deformation, is intrinsically unknown and
has to be computed. As shown in the next section, it follows from minimizing
the stress power of the respective solids, i.e., the energetically most favorable
microstructures will form. Fortunately, due to the relatively simple boundary
conditions and experimental observations, many variables can be a priori de-
termined for sample “E“ (see also Aubry et al. (2003)). For an overview, the
variables defining the microstructure are summarized in Tab. 9.1.

Table 9.1: List of microstructure related variables

1ξ 2ξ
+ = 2ξ

−
2ξ

+
BL = 2ξ

−
BL 2n

+
int = 2n

−
int

0.5 unknown Eq. (9.20) unknown

l 1l
+ = 1l

−
2l

++
= 2l

−+
2l

+− = 2l
−−

12.7 mm l/2 unknown unknown

a n a+ n+ a− n−

direction 〈1̄010〉 {0001̄} 〈011̄1〉 {01̄12} 〈01̄11〉 {011̄2}
amplitude unknown 1 0.35 1 0.35 1
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Figure 9.4: Schematic illustration of twinning evolution by means of rank-one
laminates for monotonic loading (strain amplitudes: ε1 < ε2 < ε3): Due to
the misfit between higher-order laminates, wedge-shaped boundary layers are
necessary for a continuous deformation (upper figure). They are approximated
by a straight boundary layer (bottom figure).

9.3 Constitutive equations

Having discussed the kinematics associated with dislocation slip and deformation-
induced twinning, focus is now on the constitutive equations. First, the
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Helmholtz energy is elaborated in Subsection 9.3.1. Subsequently, the dis-
sipation related to twinning is addressed in Subsection 9.3.2. The final model
is summarized in Subsection 9.4 and numerical aspects concerning its imple-
mentation are also given. In line with the crystal plasticity model shown in
Section 4.2.1, it is uniquely driven by energy minimization.

9.3.1 Helmholtz energy

9.3.1.1 Helmholtz energy within the different phases

Within each phase, the deformation may be purely elastic or elastoplastic as
a result of dislocations. Accordingly and following Section 4.2.1, a Helmholtz
energy of the type

Ψ = Ψe(Ce) + Ψp(λ) (9.21)

represents a suitable choice. As in the previous section, the elastic response is
approximated by the neo-Hooke-type model (7.2), while the stored energy due
to plastic work again is decomposed into self hardening and latent hardening
effects, i.e.,

Ψp = Ψp(λ) = Ψp
self(λ) + Ψp

lat(λ). (9.22)

A size-dependence of the hardening parameters can be accounted for by as-
suming that Ψp depends also on the mean free path of dislocations, cf. Aubry
et al. (2003); Hansen et al. (2010), i.e.,

Ψp = Ψp(λ,h) (9.23)

with h = {h(1), . . . h(n)} containing the mean free path of the n different dis-
location systems. However, due to lack of experimental observation, such an
enhanced model will not be used within the numerical examples presented in
the next section. A size-effect of Hall-Petch-type will nevertheless be imple-
mented by relating the yield limit Σ

(a)
0 to the mean free path of dislocations,

cf. Eq. (9.27).

9.3.1.2 Helmholtz energy associated with the twinning interface

According to experimental measurements, the energy of twinning interfaces
is relatively small compared to the elastic energy stored within the bulk, see
Ball & James (1987); Morris et al. (2005). More precisely, the interface energy
reported in Morris et al. (2005) is about k = 0.140 mJ/m2. Based on this
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measurement, the total energy of nint interfaces showing a cross sectional area
of Aint each is computed as

Ψmix(nint, Aini) = knintAint. (9.24)

Clearly, a constant area specific energy is a comparably simple assumption.
However, due to lack of experimental information, it seems to be appropriate.
Furthermore and equally importantly, the presented constitutive framework is
very general and allows also the incorporation of more complicated interface
models.

9.3.1.3 Helmholtz energy associated with the boundary layer

Unfortunately, even less information is available about the boundary layer.
More precisely, only the respective deformation gradient is known (see Eq. (9.9)).
For this reason, a fully elastic response is assumed, i.e.,

ΨBL = ΨBL(C). (9.25)

In the numerical examples, the neo-Hooke-type model (7.2) is adopted. How-
ever, it bears emphasis that any elastoplastic model can easily be included as
well.

9.3.1.4 Total Helmholtz energy

By summarizing the different Helmholtz energies introduced before, the total
stored energy of a first-order laminate can be computed as

Ψ = (1− ξBL)
`
(1− ξ)Ψ+(C+,λ+) + ξ Ψ−(C−,λ−)

´
+ ξBL ΨBL(CBL) + Ψmix(nint, Aint).

(9.26)

Since the Helmholtz energy is an extensive variable, it decomposes additively.
Although the Helmholtz energy has been specified here only for a first-order
laminate, it can be generalized in a straightforward manner to the more general
case. For that purpose, Eq. (9.26) has to be applied recursively. Further details
are omitted here. However, they will be discussed in Subsection 9.4.

9.3.2 Dissipation and kinetics

9.3.2.1 Dissipation due to plastic deformation – dislocations within the
different phases

In line with Section 4.2.1, dissipation due to plastic deformation is modeled
by a functional being positively homogeneous of degree one. More precisely
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and fully identical to Section 4.2.1,

D =

nX
a=1

ς(a) Σ
(a)
0 ≥ 0 (9.27)

is considered. However and in sharp contrast to Section 4.2.1, a size-effect of
Hall-Petch-type is accounted for. For this reason, the critical effective resolved
shear stress Σ̃0 is related to the mean free path of dislocations according to

Σ̃0 = Σ0 +
T

bh
(9.28)

with h being the length of this path, b and T denoting material parameters
(amplitude of the Burgers’ vector and line tension) and Σ0 representing the
resolved shear stress of the local model (without Hall-Petch effect). Thus,
the smaller this length, the higher the resolved shear stress Σ0. Within the
numerical simulations, the thickness of the laminates is taken as h.

9.3.2.2 Dissipation due to twinning nucleation

Analogously to dislocation slip, initiation of twinning lenticulars is also accom-
modated by elementary dislocations, see Christian & Mahajan (1995). Thus,
a dissipation functional similar to Eq. (9.27) represents a suitable choice. Con-
sidering one active slip system and neglecting hardening effects, Eq. (9.27) can
be re-written as

ς(a) Σ
(a)
0 = ς(a) |Σ :

“
s(a) ⊗m(a)

”
|. (9.29)

As a result, a dissipation potential of the type

Dint = µ ε̂ ṅint (Σ : (a⊗ n)) , (9.30)

seems to be well suited for describing the kinetics associated with twinning
nucleation. Here, ε̂ is a material parameter. It bears emphasis that twinning
is a polar deformation system and thus, twinning initiation requires a positive
resolved shear stress, see Christian & Mahajan (1995). Therefore and in con-
trast to Eq. (9.29), the sign of the driving force (Σ : (a⊗n)) is important. For
instance, already existing twinning laminates can be annihilated under nega-
tive resolved shear stress (ṅ < 0). This is called de-twinning. Accordingly, n
is not necessarily monotonically increasing and thus, the physical constraint
n ≥ 0 has to be carefully checked.
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9.3.2.3 Dissipation due to propagation of twinning interfaces

Similarly to twinning initiation, zonal dislocations are again the underling
physical mechanism associated with twinning propagation, see Christian &
Mahajan (1995). Thus, the evolution equation governing such phenomena can
be derived in line with those of ideal dislocation slip. Accordingly, the rate of
twinning growth is assumed to be proportional to zonal dislocation slip, i.e.,

ξ ∝ nzd

n̂zd
(9.31)

where nzd and n̂zd are the current number of zonal dislocations and the total
number of zonal dislocations required for transforming the volume of the initial
phase completely into the reoriented twinning phase. As a results, the total
energy dissipation due to twinning propagation denoted as Dξ can be formally
written as

tn+1Z
tn

Dξ dt ∝ ∆ξ ∝ ∆nzd. (9.32)

Hence, the analogy between twinning propagation caused by zonal dislocations
and dislocation slip suggests to use a dissipation functional being positively
homogeneous of degree one in ξ. Summarizing this similarity and having in
mind that the twinning volume can also decrease, a dissipation functional of
the type

Dξ = µ ε ξ̇ (Σ : (a⊗ n)) (9.33)

represents a physically sound choice. In Eq. (9.33), µ and ε are the elas-
tic shear modulus and an additional material parameter, see Kochmann &
Le (2009); Levitas & Ozsoy (2009). In line with twinning initiation, twin-
ning propagation does also depend on the loading direction. More precisely,
Eq. (9.33), together with the dissipation inequality Dξ ≥ 0, leads to twinning
or de-twinning depending on the sign of the driving force Σ : (a⊗ n).

9.3.2.4 Total dissipation

By combining the different dissipative mechanisms analyzed within the previ-
ous paragraphs and accounting for the extensivity of energy, the total dissipa-
tion reads thus

Dtotal = (1− ξBL)
`
(1− ξ)D+ + ξ D−

´| {z }
=: Ddis

+Dξ +Dint. (9.34)
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Accordingly, it consists of a term related to dislocation slip (Ddis), a term
associated with twinning initiation (Dint) and a dissipation corresponding to
twinning propagation (Dξ). Note that Ddis has the same structure as the
Helmholtz energy of the bulk (compare Ddis to the first line in Eq. (9.26)).

9.4 The resulting nonlocal model for deformation-induced
twinning – variational constitutive updates

In Section 4.2.1, standard crystal plasticity theory was recast into an equivalent
variational principle. They key idea was the minimization of the stress power.
The same method is also applied here. For that purpose, the stress power

E = Ψ̇ +Dtotal (9.35)

is integrated over the time interval [tn; tn+1] yielding the incrementally defined
potential

Iinc =

tn+1Z
tn

{Ψ̇ +D} dt = Iinc(F ,λ−,λ+, ξ, ξBL(ξ), nint,a,n). (9.36)

Here, a first-order laminate has been considered for the sake of simplicity.
According to Eq. (9.36) and analogously to crystal plasticity, the functional
depends on the macroscopic strains through F and on the internal variables
related to dislocation slip (λ±). However, it is also affected by the microstruc-
ture (ξ, ξBL(ξ), nint,a,n). As mentioned in Remark 18 on page 90, some of
the microstructural parameters can be a priori computed for certain boundary
value problems (e.g., due to symmetry). Based on Eq. (9.36), the unknowns
are computed from the optimization problem

(λ−,λ+, ξ, ξBL(ξ), nint,a,n) = arg inf
λ±,ξ,ξBL(ξ),nint,a,n

Iinc (9.37)

and the stresses follow subsequently from

P = ∂F

„
inf

λ±,ξ,ξBL(ξ),nint,a,n
Iinc

«
. (9.38)

A careful analysis of Eqs. (9.35) and (9.36), together with the Helmholtz en-
ergy (9.26) and the dissipation functional (9.34), reveals that minimization
principle (9.37) is indeed physically sound. More precisely, stationarity of Iinc

with respect to the internal variables λ± is equivalent to enforcing the yield
functions, i.e., φ(a) ≤ 0. This can be seen by noticing that the structure of
the dissipation (9.34) and that of the Helmholtz energy (9.26) is identical for
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all terms involving λ±. As a result, except for a factor c, this stationarity
condition is equivalent to that of standard crystal plasticity, i.e.,

∂λ+Iinc = ∂λ+

(
(1− ξBL) ξ| {z }

=c

"
Ψ+
n+1 +

nX
a=1

∆ς(a) Σ
(a)
0

#
| {z }

crystal plasticity

)
. (9.39)

Furthermore and as already pointed out in Ortiz et al. (2000), stability of Iinc

with respect to the microstructural parameters a, ξ and n is equivalent to
traction equilibrium, configurational torque equilibrium and configurational
force equilibrium at the internal interfaces, respectively. The final optimality
condition with respect to the number of laminates can be physically interpreted
as a balance condition between surface and bulk energies.

Based on recursively applying Eq. (9.36), the incrementally defined potential
Iinc can also be derived for higher-order laminates. For instance, the second-
order laminate analyzed within the next section is given by

Iinc = (1− 1ξBL)
ˆ
(1− 1ξ)I

+
inc + 1ξ I

−
inc

˜
+ (1− 1ξBL)

tn+1Z
tn

1 {Dξ +Dint} dt+

tn+1Z
tn

1ξBL ΨBL dt.
(9.40)

Here, the first term is simply the volume average of the energies related to
the first-order laminates, the second one is associated with dissipation due to
twinning and the third terms corresponds to the boundary layer. Focusing on
second-order laminates, the energies I±inc are given by Eq. (9.36).

Remark 19 For computing the incrementally defined potential Iinc a fully
implicit time integration scheme is applied, see Eq. (9.36). While a classical
backward Euler scheme is adopted for the scalar-value variables, the exponen-
tial mapping is used for integrating the flow rule, see Eq. (4.32).

9.5 Numerical results and discussion

In this section, the novel model suitable for the prediction of the microstructure
in magnesium is carefully analyzed by comparing experimental observations to
numerically obtained results. For that purpose, the channel die test with the
crystal orientation labeled as ”E“ is considered. A detailed description of the
test and the induced mechanisms has already been given in Subsection 9.2.4.
According to Subsection 9.2.4, the resulting deformation is approximated by a
second-order laminate. The a priori known as well as the unknown parameters
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describing the respective microstructure are summarized in Tab. 9.1. For
highlighting the features of the model advocated in the present chapter, three
different constitutive model are adopted. They are summarized below.

• Local model: size effects are excluded by neglecting the boundary layer
and by fixing the number of laminates for each phase, i.e.,

2ξ
±
BL = 0, 2n

± = 1. (9.41)

• Non-local, dislocation-free model: Dislocations within the different phases
are completely neglected, i.e.,

2λ
± = 0, F±

±
= F e±±, F p±± = I. (9.42)

• Fully nonlocal model including dislocation slip

The material parameters used within the different models are given in Tab. 9.2.
By comparing Tab. 9.2 to Tab. 7.2, one can see that the parameters describing

Table 9.2: Material parameters used in the numerical analysis

Elastic Properties λE = 34(GPa) µ =17 (GPa)

Hardening parameters: Pyramidal system

Σ0 (MPa) h0 (MPa) Σ∞ (MPa) lab b (nm)

25 7100 105 25 6

Twinning related material parameters

λTwin ε ε̂ k (mJ/m2) T (N)

0.35 2× 10−4 2× 10−4 0.140 0.03× 10−9

the elastoplastic response of the respective solids have not been changed.

The stress response as predicted by the different models, together with the ex-
perimentally measured data (see Kelley & Hosford (1968)), is shown in Fig. 9.5.
While the left figure covers the whole loading range, a zoom in of the first load-
ing stage is depicted on the right hand side. This magnification reveals that
the difference between the models is only minor until the twinning phase be-
comes more dominant. More precisely, the mechanical response is predicted
as slightly stiffer, if the boundary layer and the interface energy are taken into
account. The relatively small increase in stiffness is due to the relatively low
area specific energy k. The evolution of the twinning volume fractions {1,2}ξ

±

is illustrated in Fig. 9.6. Accordingly, the first loading stage is associated
with a transformation of the initial phase to the twinning phase. When the
twinning process is completed, the new phase becomes active, resulting in a
significant macroscopic hardening effect (see ε > 0.06 in Fig. 9.5). As evident
in Fig. 9.5, all models capture this transition very well. However, the nonlocal
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Figure 9.5: Channel die experiment (see Kelley & Hosford (1968)): comparison
between experimentally measured data and computed stress-strain response.
The bottom figure represents a zoom in of that on the top. Within the dia-
grams, the true stress vs. the true strain has been plotted.
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Figure 9.6: Channel die experiment (see Kelley & Hosford (1968)): evolution
of the twinning volume fraction

dislocation-free model over predicts the stiffness of the twinning phase. Con-
trariwise, the solid is predicted as too weak, if the crystal is allowed to further
relax by neglecting the boundary layer. The best stress-strain response is ob-
tained for the fully nonlocal model taking also dislocation-related hardening
effects into account. It bears emphasis that the analyzed example is relatively
benign, e.g., monotonic, radial loading. Consequently, unrealistic elastic un-
loading as predicted by the nonlocal model without dislocation slip cannot be
seen. Furthermore, since only one specimen size is investigated in Kelley &
Hosford (1968) and the interface energy is relatively low, the difference be-
tween the local model and its nonlocal extension is relatively small. A key
difference between the local model and its nonlocal extension can nevertheless
be seen in Fig. 9.7. This figure shows the number of laminates during loading.
Clearly, this number cannot be computed by means of a purely local theory.
According to Fig. 9.7, the total number of laminates (2n

+ + 2n
−) reaches 7000

at εzz = 0.06. Considering the initial size of the single crystal (see Kelley
& Hosford (1968)) as well as the evolution of the twinning volume fractions

{1,2}ξ
±, the thickness of such laminates can be computed, see Fig. 9.7. As ev-

ident from Fig. 9.7, the model leads to thick laminates during the early stages
of deformation. For the analyzed example, this thickness decreases monoton-
ically. Beyond ε = 0.06, the microstructure consists of very fine laminates



9.5. Numerical results and discussion 101

0 . 0 0 0 . 0 2 0 . 0 4 0 . 0 6 0 . 0 8 0 . 1 00

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

7 0 0 0

8 0 0 0

 

 

 

 
N

u
m

b
er

o
f

la
m

in
a
te

s

ε

0 . 0 0 0 . 0 2 0 . 0 4 0 . 0 6 0 . 0 8 0 . 1 00

1 0

2 0

3 0

4 0

5 0

6 0

7 0

 

 

 

 
S

iz
e

o
f

la
m

in
a
te

s
µ

m

ε

Figure 9.7: Channel die experiment (see Kelley & Hosford (1968)): top: evo-
lution of the number of laminates of the second level (2n

++2n
−); bottom:

numerically predicted size of the rank-two laminates layers

(< 3µm) and more than 97% of the volume has been transformed to the twin-
ning phase, cf. Fig. 9.6. Similar trends were also reported, e.g., in Hansen
et al. (2010).
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10 Summary and outlook

The focus of the present thesis was on the theoretical analysis of dislocation
slip and deformation-induced twinning using a thermodynamically consistent
framework. Particularly, the complex interplay between these deformation
modes has been investigated. For that purpose, several enhanced models have
been proposed. More precisely, an incremental minimization principle was
derived which allows to determine the unknown dislocation slip rates by com-
puting the stationarity conditions of a (pseudo) potential. By combining this
principle within the concept of pseudo-dislocations, a novel constitutive model
for magnesium was elaborated. Within this model the reorientation of the
crystal lattice is applied when the part of the Helmholtz energy characterizing
the pseudo-dislocation system reaches a certain threshold value.

This physically questionable decomposition of the twinning history into pseudo-
dislocations followed by a reorientation of the total crystal can be naturally
avoided by sequential laminate theory. The final model captures the trans-
formation of the crystal lattice due to twinning in a continuous fashion by si-
multaneously taking dislocation slip within both, possibly co-existent, phases
into account. The shear strain imposed by twinning as well as the deformation
history were consistently included within the twinned domain by an enhanced
multiplicative decomposition of the deformation gradient. Furthermore, the
Helmholtz energy of the twinning interfaces and that of the boundary layer nec-
essary for fulfilling the boundary conditions were explicitly considered. Anal-
ogously, the energy due to twinning nucleation and that related to twinning
growth were also accounted for by suitable dissipation functionals. By doing
so, the plastic deformation due to dislocations, the total volume of the twin-
ning phase as well as the number of twin lamellas represent the unknowns to
be computed within the resulting energy principle. Consequently, the thick-
ness of the lamellas can be computed as well. By interpreting this thickness
as the mean free path of dislocations, a size effect of Hall-Petch-type was nat-
urally included within the novel model. Although the predictive capabilities
of the final approach were only demonstrated for magnesium by analyzing the
channel die test, the presented approach is very general and thus, it can also
be applied to other materials showing twin lamellas.

Although the novel models proposed within the present thesis do capture the
most important deformation systems in magnesium realistically, several further
improvements of the constitutive laws are still needed. First of all, only rela-

103
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tively simple boundary value problems have been considered within the model
based on sequential laminates and solved numerically by a MATHEMATICA R©

code. For more complicated microstructures, a finite element implementation
is required. A second, important enhancement of the advocated constitu-
tive models is the incorporation of phase transformation due to recrystalliza-
tion. This is of utmost importance for understanding the production-process-
material-properties relation.
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