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Abstract

This document provides guidance on the determination of damage and fracture of ductile metallic
materials and structures made thereof, based mainly on experience obtained at GKSS. 

The method used for the fracture prediction is the cohesive model, in which material separation is
represented by interface elements and their constitutive behaviour, the so-called traction-separation
law, in the framework of finite elements. Several traction-separation laws are discussed, some of
which are already implemented in commercial finite element codes and therefore easy applicable.

Methods are described for the determination of the cohesive parameters, using a hybrid experi-
mental/numerical approach. 

SIAM CM 09 – die SIAM-Methode zur Ermittlung von Schädigung und Bruch von
Werkstoffen und Bauteilen

Zusammenfassung

Der vorliegende Bericht beschreibt eine im Wesentlichen auf Erfahrungen von GKSS beruhende
Vorgehensweise zur Ermittlung von Schädigung und Versagen in duktilen metallischen Werkstoffen
und daraus hergestellten Bauteilen. Die hierfür eingesetzte Methode ist das Kohäsivmodell, in
welchem die Werkstofftrennung  durch Interface-Elemente und deren Konstitutivverhalten, das so
genannte Kohäsivgesetz, repräsentiert wird. Eine hybride Methode, bestehend aus Experimenten
und numerischen Simulationen, zur Ermittlung der Kohäsivparameter wird beschrieben.

Manuscript received / Manuskripteingang in TKP:  23. Februar 2009





 5

CONTENTS 

SUMMARY ............................................................................................................................... 7 
DEFINITIONS........................................................................................................................... 8 
NOMENCLATURE................................................................................................................. 10 
1 SCOPE AND SIGNIFICANCE....................................................................................... 11 

1.1 Objective .................................................................................................................... 11 
1.2 Traction – Separation Law......................................................................................... 11 
1.3 Determination of Cohesive Parameters...................................................................... 11 

2 INTRODUCTION............................................................................................................ 12 
2.1 Motivation for Applying Numerical Damage Models ............................................... 12 

2.1.1 Micromechanics based models ......................................................................... 13 
2.1.2 Phenomenological models ................................................................................ 13 

2.2 The Cohesive Model .................................................................................................. 13 
2.2.1 Traction – separation law.................................................................................. 15 
2.2.2 Tangential separation and mixed mode fracture............................................... 17 
2.2.3 Cohesive elements ............................................................................................ 19 
2.2.4 Commercial solutions for cohesive elements ................................................... 20 
2.2.5 Crack path......................................................................................................... 20 
2.2.6 Further functionalities....................................................................................... 21 

3 MATERIAL CHARACTERISATION............................................................................ 22 
3.1 Fundamentals and Current Restrictions ..................................................................... 22 
3.2 Traction – Separation Laws for Global Mode I Fracture........................................... 23 
3.3 Finite Element Simulations with Cohesive Elements ................................................ 24 

3.3.1 Mesh generation................................................................................................ 24 
3.3.2 Numerical convergence .................................................................................... 25 

3.4 Determination of the Cohesive Parameters................................................................ 25 
3.4.1 Direct identification procedures ....................................................................... 26 
3.4.2 Identification procedure using numerical optimisation .................................... 28 

4 APPLICATIONS ............................................................................................................. 30 
4.1 Damage Free Material................................................................................................ 30 
4.2 Treatment of Thin-Walled Structures ........................................................................ 30 
4.3 Simulation of Crack Extension (R-Curves)................................................................ 32 
4.4 Interfaces .................................................................................................................... 33 

4.4.1 Welded Joints.................................................................................................... 33 
4.4.2 Coatings ............................................................................................................ 35 
4.4.3 Delamination..................................................................................................... 35 

4.5 Prediction of Crack Path ............................................................................................ 35 
4.6 Time dependent effects .............................................................................................. 37 

4.6.1 Rate dependent formulations ............................................................................ 38 
4.6.2 Dynamic fracture .............................................................................................. 38 
4.6.3 Stress corrosion cracking.................................................................................. 39 

4.7 Unloading and reversed loading, Fatigue................................................................... 39 
5 OPEN ISSUES ................................................................................................................. 41 

5.1 Determination of the Cohesive Energy by a Direct Procedure .................................. 41 
5.2 Shape of the TSL........................................................................................................ 42 
5.3 Effect of Triaxiality.................................................................................................... 44 

BIBLIOGRAPHY .................................................................................................................... 49 
APPENDIX 1: PARAMETER IDENTIFICATION USING NEURAL NETWORKS .......... 53 
 A 1.1 Fundamentals of the Artificial Neural Network ...................................................... 53 
 A 1.2 Setup of the ANN for parameter identification ....................................................... 53 
 A 1.3 Application of the ANN........................................................................................... 54 



 

 6 

APPENDIX 2: WORKED EXAMPLES FOR SIMULATION OF CRACK EXTENSION .. 55 
 A 2.1 General Comments .................................................................................................. 55 
 A 2.2 Three-dimensional Analysis of Crack Extension in the Low-strength Aluminium 

Alloy Al 2024-FC Using Direct Procedures............................................................ 55 
 A 2.3 Thin Sheet of the High-strength Aluminium Alloy Al 2024 T351, Using Direct 

Procedures................................................................................................................ 61 
 A 2.4 Three-dimensional Analysis of Crack Extension in the Pressure Vessel Steel 

20 MnMoNi 5 5, Using Direct Procedures.............................................................. 63 
 A 2.5 Simulation of Crack extension in a Stiffened Structure, Using Indirect Identification 

Procedure ................................................................................................................. 69 
APPENDIX 3: HINTS FOR THE TREATMENT OF BRITTLE MATERIALS................... 75 
BIBLIOGRAPHY (Appendix)................................................................................................. 77 
 



 

 7

SUMMARY 

This document represents a module of the GKSS structural assessment system SIAM and 
describes guidelines for the application of cohesive models to the evolution of damage in 
materials. The material is characterised by a specific constitutive law, the cohesive law, which 
is assigned to cohesive elements. These cohesive elements are embedded in a finite element 
mesh of the structure under consideration. 

The cohesive law relates the tractions acting on the cohesive element surface to the 
material separation and is therefore called traction-separation law (TSL). It can be described 
by a function, which includes three material parameters 

- The cohesive strength, T0, 

- The cohesive energy, Γ0, and 

- The critical separation, δ0, 

which are determined by  hybrid experimental/numerical procedures. In addition, the shape 
of the function must be determined or predefined for a complete description of a cohesive 
law. If, however, for a given class of materials the shape of the cohesive law is fixed, then 
only two parameters are needed. In this Procedure, the cohesive stress and the cohesive 
energy are considered the relevant parameters. 

The methods described in this Procedure can be used for the determination of damage in 
materials and structures with and without pre-existing flaws, and hence for structural 
assessment. They are based on experience with metallic materials gained at GKSS as well as 
taken from literature. The first part of the suggested SIAM Procedure describes material 
characterisation. In the following section areas of application are compiled. A particularly 
interesting area of application is the prediction of slow stable crack extension in thin-walled 
light-weight structures. 

In an appendix validation by means of test pieces and application to some structural 
configurations are given. 
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DEFINITIONS 

Traction – Separation Law 
A set of equations (also known as cohesive law) describing the relationship between a stress 
and a separation within the cohesive elements, from zero separation up to loss of coherence.  
 
Ductile Tearing 
Crack extension due to micro-void formation and coalescence. 

Cohesive Strength 
Maximum stress of the traction – separation law. 

Cohesive Energy 
Area under the curve describing the traction – separation law  

Damage 
Irreversible process that causes material degradation and finally causes failure. The kind of 
damage and thus the affected material volume depends on the micro-mechanisms of damage.. 

Separation 
Phenomenological description of material damage and failure by assuming that two initially 
connected material points separate by some damage process. 

Finite Element Method (FEM) 
Numerical method based on the principle of virtual work to effectively calculate the material 
behaviour by dividing a structure into elements with simple displacement formulations. 

Cohesive Element 
The cohesive element is a special numerical formulation within the framework of finite 
elements which are able to model the material separation by a cohesive law. 

 
Global Mode I Fracture 
Global loading which produces a typical mode I stress field. 
 
Flat Fracture 
Fracture surface which evolves normal to the applied loading direction under →Global 
Mode I Fracture conditions. 
 
Slant Fracture 
Fracture surface which evolves frequently for thin-walled panels. It turns to 45° (out-of-plane) 
with respect to the applied loading direction. 
 
Normal Separation 
Phrase used only in the context of cohesive elements. Normal separation is the opening mode 
of the cohesive elements normal to its interface orientation 
 
Tangential Separation 
Like → Normal separation only used in the context of cohesive elements. Opening mode of 
the cohesive elements in the plane of the interface element. 
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Stable Crack Extension 
Crack extension, which, under displacement control, stops when the applied displacement is 
held constant. 
 
Fracture Resistance 
The resistance a material exhibits to stable or unstable crack extension, expressed in terms of 
K, δ5, J or CTOA. 
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NOMENCLATURE 

Dimensions 
a Crack length 

Tensile Properties 
E Young’s modulus   
ν Poisson’s ratio 
Rp0.2  Yield strength equivalent to 0.2 percent proof stress 
Rm Tensile strength 
σY Yield strength, general 

Forces, Stresses and Displacements 
F Applied force 
σ Normal stress 
σeff Effective stress  
σm Mean stress, also called hydrostatic stress, σm = σii/3 

Fracture Parameters and Related Quantities 
Δa Crack extension 
J Fracture resistance in terms of the experimental equivalent of the J-integral 
Ji Value of J at initiation of ductile tearing 
Ψ Crack tip opening angle 
δ5 Crack opening displacement measured at the surface of a specimen or structural 
component  either side of the original crack tip over an initial gauge length of 5 mm 
Cohesive Parameters 
T Cohesive stress 
T0 Cohesive strength 
Γ0 Cohesive energy   
δ Separation 
δ0 Critical separation 
δn Separation normal to the fracture surface 
δt Separation tangential to the fracture surface 

The SI units to be used in this Procedure are: 

F Force, kN 
σ, T Stress, MPa 
δ5 Displacement, mm 
Δa Crack extension, mm 
J Experimental equivalent of J-integral, MPa m 

Acronyms 
CMOD Crack mouth opening displacement 
CTOA Crack tip opening angle 
CTOD Crack tip opening displacement 
TSL Traction – separation law 
FEM Finite Element Method 
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1 SCOPE AND SIGNIFICANCE 

1.1 Objective 

This document represents a module of the GKSS structural assessment method SIAM and 
provides guidance for the application of cohesive models to determine damage and fracture in 
materials and structural components. This can be done for configurations with or without a 
pre-existing crack. Although the present document addresses structural behaviour the methods 
described herein may also be applied to any deformation induced material damage and failure, 
e.g. those occurring during manufacturing processes. 

Guidance is provided for the following elements of an analysis: 

- Formulation of the cohesive law, 

- Determination of the cohesive parameters, 

- Validation of the cohesive model and application to structural assessment. 

In an appendix, additional information is given for the implementation of the cohesive 
element into finite element system, 

According to the experience gained at GKSS the methods described in this document are 
applicable to the behaviour of ductile metallic materials and structural components made 
thereof. Hints are also given for applying the cohesive model to other materials. Since 
experience in practical applications is limited to global mode I failure at this time, the main 
part of the document will be confined to this issue. However, the basis for the description of 
mixed mode failure will be given. 

Due to its computer efficiency, the cohesive model is particularly suited for large amounts 
of crack extension, and hence for the assessment of thin-walled light weight structures. 

1.2 Traction – Separation Law  

Numerous formulations for a cohesive law have been developed. The choice of a specific 
formulation depends strongly on the class of material under consideration (e.g. ductile metals, 
concrete, polymers, etc.).  

Within this Procedure, several traction-separation laws are discussed based on their typical 
application and on their ease of use, since some of them are already implemented in 
commercial codes. However, not all implemented laws are well suited for the problem under 
consideration. Guidance is given on the choice of the traction-separation law and also for the 
implementation of a new cohesive element with a specific law.  

1.3 Determination of Cohesive Parameters 

In this Procedure, the two parameters: cohesive strength, T0, and cohesive energy, Γo, are 
used to describe the cohesive law quantitatively. These parameters are determined by means 
of hybrid methods combining experiments and numerical simulations. Methods for parameter 
optimisation are also given. 

 



 

 12 

2 INTRODUCTION 

Due to the developing nature of the cohesive model, this document is supposed to provide 
guidance on practical application rather than a document written in strict procedural form, 
unlike the other documents of SIAM. As potential users may be less familiar with numerical 
damage models than with classical fracture mechanics, a brief introduction of the cohesive 
model is deemed useful and will be provided in this chapter. For more in-depth studies see the 
fast growing literature in this area, e.g. the papers listed in the Bibliography section.  

After the guidelines detailed in Chapter 3, areas of application are described in Chapter 
4, some open issues are given in Chapter 5, showing the developing nature of the model and 
providing hints for further research. According to the experience gained at GKSS, the focus of 
the present document is on structural assessment, considering structural components made of 
bulk material and their welds. In an appendix worked examples are demonstrated.  

2.1 Motivation for Applying Numerical Damage Models 

Structural components containing crack-like flaws, or supposed to contain such flaws, are 
commonly assessed using the concepts of classical fracture mechanics. These concepts have 
become mature in the sense that both the characterisation of structural materials and 
assessment methods have already been cast into national and international standards, 
standard-like procedures, and codes. A comprehensive overview is given in [1]. However, the 
limits of classical fracture mechanics came into the focus of structural integrity research as 
higher exploitation of the mass of an engineering structure became of increasing importance 
due to the increasing awareness of the limited availability of raw materials and fossil fuel. 

In the framework of fracture mechanics, cracked bodies are basically treated in a two-
dimensional manner, notwithstanding the fact, that frequently three-dimensional finite 
element analyses of test pieces and structural components are performed. The problem is that 
a fracture mechanics material property, either in terms of a single-valued parameter, 
commonly known as fracture toughness, or a relationship between the crack extension 
resistance and the amount of crack extension, is determined under circumstances describing 
the near-tip stress and strain fields under limiting conditions. These conditions are usually 
plane strain, more recently plane stress conditions have also been considered to account for 
the requirements of light-weight structures which are usually characterised by thin walled 
design [2], see also [3]. However, the conditions a structural component is under are 
frequently unknown and can substantially deviate from the test conditions for the 
determination of the fracture properties to be used for the assessment of the component. This 
problem is known as the transferability problem in classical fracture mechanics. 

The advent of numerical damage models is providing a new approach to structural 
assessment in that these models deal with the damage events in the near-crack tip process 
zone which are embedded in the global finite element model of the component. This way the 
global FE model prescribes the loading conditions the component is under onto the damage 
zone. If the global FE model allows three-dimensional analyses and if the damage model 
parameters are given as functions of the triaxiality of the stress state, then the transferability 
problem is ideally solved. The damage models most commonly used can be partitioned into 
two groups: Models based on micromechanical processes of damage and phenomenological 
models.  
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2.1.1 Micromechanics based models 

For ductile metals, this class of models is based on porous plasticity which describes the 
effects of nucleation, growth, and coalescence of voids on the load bearing capacity of a 
material volume as a function of the local stresses acting on that volume. A number of 
variants of these models have been suggested, see e.g. [4]. Of these, the Gurson–Tvergaard–
Needleman model is the most widely used one. 

In the case of brittle materials, another problem arises, which is the scatter of the input 
variables, such that only a failure probability can be given. Deterministic models as 
summarized here cannot capture this phenomenon and therefore this issue is outside the scope 
of this document. For further information, refer to [5][6]. 

2.1.2 Phenomenological models 

In this group, the models do not depend on a specific failure mechanism and can therefore 
be used for arbitrary damage. However, the evolution law may indeed be applicable to a 
specific class of materials only. Within the group a further distinction can be made by the way 
of implementation: Models which have a damage law embedded in the continuum 
formulation are called continuum damage models, whereas the cohesive models do not 
describe material deformation but only separation. In the following, only cohesive models are 
considered for the modelling of damage and failure of materials and structure. 

The cohesive model employs a material model [7][8], which is represented by a traction-
separation law describing the loss of load bearing capacity of the material as a function of a 
separation, irrespective of the physical details of damage occurring in an actual material. 
Hence, it can be applied to both ductile and brittle damage and failure processes. The absence 
of mesh dependence – in contrast to porous plasticity models – makes the cohesive models 
very attractive. A length parameter is already included in the model, the critical separation δ0. 
A draw back of the cohesive model is that the crack path has to be pre-defined.  

Of numerical damage models, the phenomenological cohesive model is the most user 
friendly one and has a number of advantages wherefore it has been chosen as the first 
numerical damage model to be included in the GKSS structural assessment system SIAM. 
Among other items, numerical robustness, the mesh insensitivity and the need of only two 
model parameters – as opposed to e.g. up to nine parameters for the ordinary GTN model of 
porous metal plasticity -  make the cohesive model a suitable candidate for practical 
application.  

NOTE: It is recommended to read the article in Ref. [9] which contains a fundamental 
discussion on the nature of the terms “material parameter” and “model 
parameter”. 

2.2 The Cohesive Model 

In this chapter, a brief overview of cohesive models and their properties is given. Unless 
otherwise indicated, the following overview is based on Refs. [10]. Cohesive models describe 
damage and fracture in a wide range of materials at various length and time scales. These 
materials include metals, polymers, ceramics, concrete, fibre reinforced materials, wood, 
rock, glass, and others.  

As early as 1960, Dugdale [11] introduced a strip – yield model with the idea of a cohesive 
force preventing a crack from extending. The magnitude of this cohesive force is equal to the 
yield strength, σY; of the material, strain hardening is not considered, i.e. the material is 
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supposed to behave in an elastic-ideally plastic manner. Since the local stress is limited by the 
yield strength of the material, the occurrence of a physically unrealistic singularity at the 
crack tip is avoided, Fig. 2.1. The result of this analysis is the length of the plastic zone ahead 
of a crack in an infinitely wide sheet subjected to a crack opening Mode I load; it is valid for 
small scale as well as wide spread yielding until the applied stress reaches the yield strength. 
Later, Goodier and Field [12] applied the Dugdale model to the determination of the opening 
profile of the crack including the crack tip opening displacement. Application of the model to 
a sheet of finite width is also reported [13]. 

σ0
crack length a

σ0

 
Fig. 2.1: The Dugdale model. 

The cohesive models in their present form date back to the work of Barenblatt [14] who 
replaced the yield strength with a cohesive law to model the decohesion of atomic lattices, 
Fig. 2.2. This way, the plastic zone was replaced by a process zone within which damage and 
fracture occur. The detailed processes are 

- Plastic deformation; 

- Initiation, growth, and coalescence of voids in ductile materials; 

- Micro cracking in brittle materials.   

x

σ(x)crack length a
σ(x)

x
 

Fig. 2.2: The Barenblatt model. 

Material degradation and separation are concentrated in a discrete plane, represented by 
cohesive elements which are embedded in the continuum elements representing the test piece 
or structural component. In both the Dugdale and Barenblatt models, the stresses along the 
ligament within the process zone do no longer depend on the applied load; they are now a 
material property. It should be noted that in Barenblatt’s model the traction is expressed as a 
function of the distance from the crack tip, whereas the cohesive models actually in use define 
the traction as functions of the separation within the cohesive zone. Material degradation and 
separation are concentrated in a discrete plane, represented by cohesive elements which are 
embedded in the continuum elements representing the test piece or structural component. 

To our knowledge, the first application of the cohesive model to the fracture behaviour of a 
material was performed by Hillerborg et al. as early as in 1976 [15], who used this model to 
describe the damage behaviour of concrete. This material has attracted much attention as to its 
characterisation using the cohesive model, see the work of the research groups of Bažant [16], 
Carpinteri [17], and Planas and Elices [18]. For the other highly important class of 
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engineering materials: metals and their alloys, pioneering work was performed by 
Needleman, Tvergaard, and Hutchinson. The first analysis of micro damage in ductile 
materials (particle debonding from a ductile matrix) was performed by Needleman in 1987 
[19], and the first macroscopic crack extension in ductile materials was analysed by 
Tvergaard and Hutchinson [20]. Fig. 2.3 shows how the physical process can be represented 
by the cohesive model. Experimental validation of the cohesive model for ductile materials 
has been investigated later on, e.g. by Yuan et al. [21]. Further details on applications of 
cohesive models are given in Chapter 4, for an extensive overview of the cohesive model see 
[7].  
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Fig. 2.3: Cohesive model: Representation of the physical damage process by separation function 

within interface elements – cohesive elements. 

2.2.1 Traction – separation law 

The constitutive behaviour of the cohesive model is formulated as a traction-separation law 
(TSL), which relates the traction, T, to the separation, δ, the latter representing the 
displacement jump within the cohesive elements. A cohesive element fails when the 
separation attains a material specific critical value, δ0. The related stress is then zero. The 
maximum stress reached in a TSL, the cohesive strength, T0, is a further material parameter. 

A host of traction – separation laws (TSL) have been suggested. (The term “cohesive law” 
is also being used instead of “traction – separation law”). Fig. 2.4 gives an overview of 
frequently used shapes.  
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Fig. 2.4: Typical traction-separation laws: (a) Needleman [19], (b) Needleman [22], (c) Hillerborg [15], 

(d) Bazant [16], (e) Scheider [23], (f) Tvergaard and Hutchinson [20] 

Brittle crack extension analyses of concrete were the first applications of the cohesive 
model. In purely brittle materials the traction-separation law can be identified easily, since all 
deformation that is inelastic can be assumed to be material separation. Therefore, the traction-
separation behaviour can be determined from a simple uniaxial tensile test, in which the stress 
state is homogeneous and the elastic deformation can be subtracted from the global structural 
response. The resulting traction-separation law is often approximated by a linear decreasing 
function, see Fig. 2.4c and [15][24], etc or by a bilinear function, Fig. 2.4d, which has two 
additional parameters [16][25].  

For ductile metals, a TSL with a finite initial stiffness and a smooth shape as shown in Fig. 
2.4 a [19][26], sometimes also with a softening curve obeying a horizontal asymptote and 
thus approaching zero traction at infinity (Fig. 2.4b), are often used in the literature. Other 
laws, which are more versatile by introducing additional shape parameters, have also been 
used. 

For a given shape of the TSL, the two parameters, δ0 and T0, are sufficient for modelling 
the complete separation process. In practice, it has been proven useful to use the cohesive 
energy, Γ0, instead of the critical separation. The cohesive energy is the work needed to create 
a unit area of fracture surface (in fact twice the unit fracture surface because of the two mating 
fracture surfaces) and is given by 

0

0
0

( )T d
δ

Γ δ δ= ∫  (2.1) 

There is a dispute as to whether the traction-separation law should have a finite slope right 
from the beginning, i.e. also small stresses lead to a material separation, or not. One can see 
that the shape used for ductile metals has a rather high compliance in the beginning as shown 
in Fig. 2.4 a/b, whereas the shape for more brittle materials, Fig. 2.4 c/d, has a shape with 
infinite stiffness in the beginning until the cohesive strength is reached. In order to avoid an 
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unwanted “elastic” opening of the cohesive element, it is advantageous to have a high 
stiffness in the beginning. For example, in Fig. 2.4 e/f the initial compliance can be defined 
based on additional shape parameters, which specify the separation at which the cohesive 
strength is reached. 

If a traction-separation law is used, which starts without any separation until the cohesive 
strength is reached (Fig. 2.4 c/d), a contact algorithm must be employed in the 
implementation of the cohesive element, since conventional elements can never have an 
infinite stiffness. Therefore, an ascending section of the TSL is convenient for avoiding 
numerical problems, In any case, the cohesive strength, which is the highest stress the 
material is able to carry, has to be overcome, and the descending section models damage and 
hence loss of load bearing capacity.  

The choice of the TSL affects the magnitudes of the cohesive parameters, demonstrating 
the phenomenological nature of the cohesive model. This means that each traction – 
separation law requires a different set of parameters for a given problem as shown e.g. in [27]. 
Fig. 2.5 b) shows an experimental δ5 R-curve with cohesive simulations. It is seen that the 
three TSL’s used, Fig. 2.5 a), are able to models the experiment only with different sets of 
cohesive parameters, Table 2.1.  
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Fig. 2.5: a) Three TSL‘s used for simulating a δ5 R-curve; b) δ5 R-curve measured and simulated on 

a 50 mm wide C(T) specimen made of Al 5083 T321 [27]. 

Table 2.1: Parameters optimised for three TSL’s to simulate a δ5 R-curve of the aluminium alloy 
5083 H321 [27]. 

 To (MPa) δ0 (mm) Г0 (kJ/m2) 

Partly constant (Fig. 2.5 a) 560 0.024 10 

Polynomial (Fig. 2.5. b) 590 0.043 14 

Cubic decreasing (Fig. 2.5 c) 580 0.045 13 

2.2.2 Tangential separation and mixed mode fracture 

In the case of mixed mode loading, a tangential separation mode, usually designated Mode 
II and Mode III, accompanies the normally considered crack opening mode, Mode I. In linear 
elastic fracture mechanics, a phase angle, ΨLEFM, can be defined 



 

 18 

⎥
⎦

⎤
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⎣

⎡
=Ψ
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Karctan  (2.2) 

where KI and KII denote the stress intensity factors for crack opening modes I and II, 
respectively. In the context of the cohesive model, a tangential displacement, δt , represents 
the additional shear mode and is superimposed to the displacement normal to the crack plane 
(or plane of expected damage in the absence of a pre-existing crack), δn. In analogy to 
Eq.(2.2), a phase angle for the cohesive model reads [28] 

⎥
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⎤
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⎣

⎡
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δ
δ

arctan  . (2.3) 

Alternatively, the phase angle can be expressed in terms of the energy release rate 
corresponding to the cohesive energy by re-formulating Eq. (2.2) 

arctan t

n

G
G

Ψ =  . (2.4) 

In general the resulting displacement can be obtained from 

22
tnres δδδ +=

. (2.5) 

It must be noted that there are almost as many mixed mode formulations for the cohesive 
model as traction-separation laws. If the simple formulation, Eq. (2.5), is used for an 
“effective” separation, the resulting traction in normal and tangential directions is calculated 
by 

( )eff
N tT δ δδ

δ δ
⎛ ⎞= +⎜ ⎟
⎝ ⎠

T n t  (2.6) 

in which n and s are the normal and the tangential unit vectors of the cohesive element, 
respectively. A similar formulation is given by an additional weighting factor ß for the 
tangential separation in Eq. (2.6) as introduced by [24], which then leads to  

( ) 2
eff

N tT δ δδ β
δ δ

⎛ ⎞= +⎜ ⎟
⎝ ⎠

T n t  (2.7) 

Other formulations for the interaction of separation modes work without an effective 
separation, but with an explicit dependence on both the normal and the tangential separations, 
as e.g. developed by [31]: 
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 (2.8) 

An even more variable approach has been presented by [23], in which a multiplicative 
decomposition of the dependence on the separation components is used: 
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In this case, the formulation for the shape of the TSL in the one-dimensional case, f(δ), is 
fully decoupled from the interaction function g(δ) and can be chosen independently. 

It is worth noting that mixed mode loading causes path dependency, i.e. damage depends 
on how the two modes are activated during the loading process.  

2.2.3 Cohesive elements  

This document considers cohesive elements as interface elements with two surfaces, which 
usually lie on top of each other in the undeformed state, i.e. they do not span a volume. If, 
however, the two surfaces have a finite distance in between, the resulting volume does not 
have any physical meaning, since it is not the strain in the element that is the relevant 
quantity, but the displacement jump between the surfaces. Therefore any distance should be 
as small as possible and negligible compared to any other dimension in the model. In the 
framework of the finite element method, they have to be implemented corresponding to the 
surrounding continuum model, i.e. if the structure is modelled by 3D continuum elements, the 
cohesive elements must consist of surfaces as shown in Fig, 2.6 a, if the structure is modelled 
in 2D or shell elements the cohesive elements reduce to line elements, see Fig. 2.6 b and c. 
The difference between cohesive elements for plane strain/plane stress and shell structures is 
that the latter are defined in the three dimensional space. Therefore, any separation may be in- 
plane or out of plane, and the in-plane direction must be defined by the user, which can be 
done by a fifth node as shown in Fig. 2.6c. 
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Fig. 2.6: Cohesive element library for 3D FE models (a), for plane stress/strain models (b), and for 

shell models (c). 

Several commercial FEM solvers offer cohesive elements in their libraries. However, these 
elements are usually available for a subset of structural problems only, for example only for 
plane 2D and 3D problems, but not for shell meshes, etc. 
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2.2.4 Commercial solutions for cohesive elements 

The preferred method is to use those commercial codes such as ABAQUS, ANSYS, Marc, 
Zebulon and Warp3D, which do already include cohesive elements. These elements are 
verified and tested, it is assumed that the simulation with these elements is robust and stable, 
and pre-processors can be used for their generation. 

On the other hand, some features, which are investigated in the scientific community, are 
not yet available in commercial codes. Usually, only a subset of element types can be used in 
combination of cohesive elements, and the number of possible traction-separation laws is 
limited as well. In many cases, a specific class of applications was intended when 
implementing the cohesive elements. To the authors’ knowledge, no commercial code 
provides cohesive elements for shells. 

Table 2.2 gives a short overview of some present implementations of cohesive elements in 
commercial finite element systems, the as well as the element types and traction separation 
laws available. 

Table 2.2: Commercial codes providing cohesive elements in their element libraries. 

Code Cohesive elements 
for these structures 

Traction-separation 
laws 

Mixed 
mode 

Remarks 

ABAQUS 2D, 3D linear decreasing, 
exponential 
decreasing, tabular 

yes Intended mainly for 
delamination 

ADINA 2D, 3D ? ?  
ANSYS 2D, 3D exponential 

(Needleman potential) 
yes  

MARC 2D, 3D Bilinear and 
exponential 
decreasing function 

 Intended mainly for 
delamination 

WARP3D 3D Needleman potential yes  
Nastran 2D, 3D Bilinear, exponential 

and exponential 
decreasing function 

 Intended mainly for 
delamination 

Zebulon 2D, 3D Needleman potential yes Incl. automatic contact 
activation after complete 
debonding 

FRANC2D 2D linear and bilinear 
decreasing, 
exponential 
decreasing 

  

 

NOTE: For those users wishing to use their own elements, or a finite element code without  
cohesive elements, guidance is given in [30]. 

2.2.5 Crack path 

The cohesive elements embedded in the finite element model of the component to be 
assessed prescribe the path of crack extension. However, if the path a pre-existing crack is 
going to take is not known a priori cohesive elements have to be placed anywhere the crack 
may chose its path, so that that a specific array of cohesive elements becomes active and 



 

 21

hence defines the crack path which reaches the failure conditions prior to the other arrays 
placed in the neighbourhood of the crack tip, Fig. 2.7. Consequently, it seems appropriate to 
equip every crack problem with as many possible crack paths as possible in order to avoid 
false predictions of the crack path. However, the amount of computational effort increases 
with the number of elements, and the choice of the crack path is not really arbitrary, since the 
most appropriate mesh is one consisting of triangles. Beside the large number of cohesive 
elements needed for such a simulation, the zigzagging path may cause numerical problems 
and lead to a mixed mode separation where in the real material a pure normal separation 
occurs. An additional problem arises when a TSL with an initial compliance is used. In this 
case, the total deformation even at small loads depends strongly on the compliance itself and 
the number of cohesive elements in loading direction, since all elements separate slightly in a 
homogeneous stress state.  

a) b) c)  
Fig. 2.7:  Sketch showing meshes with cohesive elements between all boundaries of continuum 

elements; a) is a regular mesh; b) and c) are irregular meshes. The mesh in b) is derived by 
moving the nodes from mesh a) randomly, whereas the nodes in mesh c) are generated 
randomly.  

2.2.6 Further functionalities 

For different classes of materials, a dependence of the cohesive parameters on various field 
quantities must be taken into account. Two examples are ductile materials, where the cohesive 
parameters depend on the degree of triaxiality, or adhesives and plastics, for which the 
damage behaviour is strongly dependent on the local strain rate. Since cohesive elements do 
not account for either triaxiality or strain rate, these values must be imposed by the 
surrounding finite element model of the configuration considered. As in-depth studies are still 
lacking it is at present not possible to provide a systematic picture of these effects. Some hints 
will be given in Chapter 5. 
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3 MATERIAL CHARACTERISATION 

3.1 Fundamentals and Current Restrictions 

The cohesive model can be used for any failure mechanism, i.e. it is applicable to any 
material and for any fracture mode, i.e. applicable to any loading. However, mode II, mode III 
and mixed mode fractures are of lower priority for engineering applications. In addition, no 
reliable procedure for parameter identification is available for any other than mode I fracture 
as to the authors’ knowledge. Therefore this field will be discussed in a later version of this 
document. 

Even in global mode I fracture, additional fracture modes may occur locally. Namely this 
is the case for thin-walled structures, where a crack often turns such that the normal of the 
fracture surface is inclined by 45° to the main loading direction. The stresses acting on this 
plane are both of the normal Mode I and the shear Mode III types. 

NOTE: If the normal of the fracture surface is parallel to the main loading direction, the 
local fracture mode is called flat fracture. If the fracture surface is inclined, the 
local mode is called slant fracture. 

NOTE: Within the framework of the present procedure, the model parameter T0 is 
determined by a projection of the applied force onto a plane perpendicular to the 
side surface, see the centre drawing on the right hand side in Fig. 3.1.   
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Fig. 3.1: Overview of methods for the determination of the cohesive parameters. 

In addition, at the current state, it is assumed that the crack path is known in advance, and 
therefore, only a single layer of cohesive elements is to be placed in the finite element model. 
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3.2 Traction – Separation Laws for Global Mode I Fracture 

In this Procedure, the main focus is on numerical treatment of material separation under 
global mode I conditions. Since all cohesive model quantities are given for the normal 
direction in this section, they are written without the subscript N.   

A number of failure mechanisms and associated classes of materials are of main interest 
and therefore considered with special emphasis:  

 

 
 
 

 

 

The recommended TSL is depicted in Fig. 3.2 and given by the following set of equations: 
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Fig. 3.2: Traction-separation law for ductile materials, from [23]. 

The parameters δ1 and δ2 are set to δ1 = 0.01 δ0 and δ2 = 0.75δ0.  

The TSL is unequivocally determined by any two out of the following three parameters 

- Cohesive stress, T0, 
- Cohesive energy, Γ0, 
- Critical separation, δ0. 

According to Eq. (3.1), the area under the curve in Fig. 3.2 is given by  
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Consequently, two cohesive parameters are sufficient to describe the TSL, of which T0 and 
Γ0 have been chosen for this procedure.  

NOTE: This traction-separation law is not implemented in commercial codes. Therefore, if 
one wants to use commercial software only, the shapes that are available there 
have to be used. More information on the question, which shapes are available in 
which software, is given in Section 2.2.4. 

NOTE: In several commercial codes, an exponential function as given by Eq. (2.8) and 
shown in Fig 2.4b, or a cubic polynomial function (Fig 2.4a) can be used. Even 
though the stress plateau is not very pronounced, these types are often used in the 
literature for ductile fracture. 

NOTE: The values of the cohesive parameters are a function of the TSL chosen. They have 
different magnitudes for different TSL’s 

If the traction-separation law chosen is given by tabular input of data points of the curve, 
the following procedure is recommended:  

- The initial slope, Kini, of the TSL should be as steep as possible. As a rule of thumb, 
T0/Kini < 0.05 δ0 should hold. 

- A constant stress part should terminate at δ ≤ 0.75 δ0, then the cohesive stress should 
decrease to zero at δ0. 

- If possible the corners of this multi-linear representation should be rounded by 
additional points.  

NOTE: If the user is able to implement a contact algorithm which allows having an infinite 
stiffness up to the cohesive strength, this can also be used. 

3.3 Finite Element Simulations with Cohesive Elements 

3.3.1 Mesh generation 

In commercial finite element mesh generators it is usually not possible to define interface 
elements without any initial volume as described in Clause 2.2.3. Alternatively, the cohesive 
elements implemented in commercial codes can handle interface elements with a finite 
volume in the undeformed state instead. Therefore, the recommendation for mesh generation 
is as follows: 

Define a thin layer of elements along the prospective crack path. The height of the element 
layer hel should meet the following requirements: 

- hel << wel 

- hel << δ0  

- hel << geometrical quantities (a, B, t, W, etc.) 

 
NOTE: If the FE program requires a cohesive element with hel = 0, the interface elements 

can be generated as stated before, and the nodes are shifted afterwards such that 
the top and bottom nodes coincide, which is possible in most of the FE pre-
processors. 
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The area of the cohesive element (or the length of the line for 2D problems), in the 
following called the characteristic size, wel, must be chosen appropriately. The following 
recommendations are given: 

The cohesive element must be small enough to cover any stress gradient, especially in the 
direction of separation.  

In any case the size must be small compared to the characteristic fracture mechanics length 
scale, i.e. the radius of the plastic zone or the size of the HRR field. 

As a rule of thumb, the size of the element in crack propagation direction should be in the 
range of 50 to 250 µm for ductile materials. For 3D problems, the size in crack front direction 
must be such that it is able to cover any crack front tunnelling. In addition, a high aspect ratio 
(say higher than 1:5) must be avoided. 

3.3.2 Numerical convergence 

Crack extension simulations of ductile materials are always strongly nonlinear. In most 
cases they have three different types of nonlinearity: 

- geometrical nonlinearity 

- material nonlinearity due to plastic deformation 

- contact nonlinearity due to material separation 

Of course, these numerical issues may lead to convergence problems. Therefore, the rate of 
convergence should be improved by setting residual convergence controls explicitly. Since all 
commercial codes have their special settings, no specific recommendations can be given. 
However, in general the following issues should be considered: 

- The number of increments in the simulation should be rather high in order to get an 
accurate solution. 

- If the finite element program allows, Automatic Time Stepping should always be used.  

- The maximum number of iterations within an increment as well as the number of 
cutbacks during automatic time stepping should be increased from the default. Full 
Newton iteration should be utilized if possible and an additional line search algorithm 
within an iteration is beneficial, too. 

- If the displacement jump at a specific node from one increment to the next is a 
criterion, it might be necessary to loosen the limit significantly. However the limit of 
residual force should not be increased. 

3.4 Determination of the Cohesive Parameters  

In this section, two ways of determining the cohesive parameters will be presented, namely 
numerical fitting procedures and direct procedures based on specific tests. Although the 
fitting procedures are regarded as the standard methods, the direct procedures will be 
described first since their results may be used as starting values for fitting, in order to reduce 
the number of fitting runs. Fig. 3.1 gives an overview of various independent procedures. 

It was already mentioned that two out of the three parameters, T0, δ0 and Γ0, are 
independent. In this procedure, the parameters cohesive energy and cohesive strength are 
suggested to be used, if a direct procedure for their identification is applied. Of course, a 
fitting algorithm can deal with either set of parameters. 
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NOTE: It should also be possible to use either of these parameters together with the 
critical separation, δ0, which is approximately equal to the crack tip opening 
displacement at initiation of ductile crack extension. However, practical experience 
is not yet available. 

NOTE: Direct methods for determining cohesive parameters are in principle attractive 
because they are based on the idea that that the thus determined parameters are 
transferable, i.e. that they exhibit the same values in the specimen used for their 
determination and in the configuration to be assessed, in particular a configuration 
containing a crack. In spite of some successful applications, this presumption is not 
generally valid, wherefore it is recommended to use them in combination with one 
of the fitting procedures described below. 

NOTE: The cohesive parameters depend on the degree of triaxiality of the stress state  
(vulgo: constraint) which may vary along the crack front in thick-walled  materials 
and depend on the amount of crack extension. However, in the suggested 
procedure, they are supposed to be constant, i.e. to have those values that have 
been determined by the suggested procedure. In Section 5.1 hints are given on how 
these parameters may vary for a given configuration. 

3.4.1 Direct identification procedures 

Cohesive strength 

For flat fracture, a tensile test is performed on a round specimen containing a circular 
notch. A suggested notch geometry is depicted in Fig. 3.3 which also shows the procedure for 
the determination of T0. From the experiment, the force, F, and the thickness reduction at the 
notch root, Δb, should be measured. For the incident of fracture, the stress distribution over 
the specimen’s cross section is determined by an elastic-plastic finite element analysis. It is 
important to note that the instantaneous cross section at fracture is to be used, which means 
that continuous measurements of the cross section have to be made during the test to capture 
that condition which corresponds to maximum applied force. The simulated F(Δb) curve 
should meet the experimental one until the incident of fracture, where the experimental curve 
suddenly drops. At this point the stress distribution over the specimen’s cross section is 
determined from the simulation. The maximum value of that stress distribution is set equal to 
the cohesive strength, T0. 

For slant fracture, the cohesive stress is determined by means of a tensile test on a flat 
specimen. In this case, a uniform stress state can be assumed across the specimen’s cross 
section. Therefore, T0 is given by dividing the force at fracture by the specimen’s 
instantaneous cross section. The cross section of the specimen has to be measured 
continuously during the test.  
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Fig. 3.3: Schematic showing the determination of the cohesive stress on a notched round tensile 

specimen (dN and rN in mm). 

Cohesive energy 

The cohesive energy for flat fracture is set equal to the J-integral at crack initiation, Ji. 
The determination of this quantity requires careful experimentation. It follows the procedure 
outlined in the international standard ISO IS 12135 [32] or the ESIS Procedure P3-09 [33]. 
On at least three broken specimens exhibiting ductile tearing the critical stretch zone width, 
SZWc, has to be determined in a scanning electron microscope. The intersection of a vertical 
line representing the average stretch zone width in a J – Δa diagram with the initial part of the 
J – Δa curve defines Ji, Fig. 3.4. On the same specimens the amount of crack extension 
needed for the determination of the J – Δa curve can be determined; this is indicated in 
Fig. 3.4.  
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Fig. 3.4: Determination of Ji by intersecting the R-curve with the critical stretch zone width, SZWc. 
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A direct technique for the determination of the cohesive energy under slant fracture 
conditions has not yet been developed. In this case, Γ0 is obtained by the methods described 
in Clause 3.4.2.  

NOTE: Following the procedure for flat fracture, a test for determining Ji could be 
performed if a slant pre-crack could be produced in a specimen as shown in the 
bottom right hand sketch in Fig. 3.1. However, relevant experience has not been 
gained at GKSS. 

3.4.2 Identification procedure using numerical optimisation 

A two parameter optimisation method is suggested in the present Procedure. The 
experiments for the parameter identification should be performed on a standard fracture 
specimen. The size of the specimen is of minor importance, and thus a small specimen is 
recommended. The stress state of the specimen for parameter identification should be similar 
to that of the structure to be assessed in order to assure the same failure mechanism. In 
addition, if the parameters depend on triaxiality, the values identified are not valid for 
different stress states. Therefore, in general if the structure under consideration is a thick-
walled one (such that the conditions at the crack tip can be assumed to be plane strain), the 
specimen for parameter identification must be a plane strain specimen as well. On the other 
hand, if a thin-walled structure is to be investigated, a sheet panel must be used for parameter 
identification, since the values for high triaxiality are not applicable. 

If possible, a tensile type fracture specimen should be used, e.g. the M(T) specimen, since 
the R-curve of such specimens has a steeper slope than that of bend type specimens. 
Therefore, differences due to changes in the cohesive parameters will have a stronger effect 
on the material response. 

It is necessary to measure the force, F, a deformation, e.g. CMOD, vLL or even CTOD/δ5, 
and the crack extension, Δa. From these values, a force-elongation curve and an R-curve 
based on J or CTOD can be extracted.  

For the numerical optimisation, first an initial set of parameters must be estimated. This 
can be done by the methods described in Clause 3.4.1. 

If a J R- curve is available, it should be used for the optimisation instead of the force-
deformation curve, since this curve is less sensitive to geometrical differences. Then the  
starting value for the cohesive energy can be taken from this curve as the value for crack 
initiation, Ji. If, on the other hand, the R-curve is given based on CTOD, then the CTOD value 
at initiation can be taken as a starting value for δi.  

The cohesive strength should initially always be taken from an experiment according to 
Clause 3.4.1. If such an experiment is not available, then a starting value can be set equal to 
the stress at failure of the tensile bar, as long as no localised necking occurs in the specimen 
during the test. If necking occurs, the cohesive strength must be higher than the ultimate 
strength of the tensile bar converted in true stress: 

( )0 1m mT R ε> +  (3.3) 

Usually, e.g. for structural steels, it is three times the yield strength, but this is a very rough 
estimate, values are also reported between 2.5 σY and 5σY.  

For the optimisation procedure itself, the following three procedures are recommended: 

a) Trial and error. This is probably the most often even though time consuming 
procedure for identifying the cohesive parameters. Depending on the user’s experience, a few 
up to some twenty or more simulations are necessary to achieve a reasonably good 
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approximation of the experiment. Of course, the user should be able to anticipate effects of 
variations in the parameters T0 and Γ0 on the numerical solution. It is highly recommended to 
use a comparison of the simulated with the experimentally determined R-curve as a criterion 
for the quality of the numerical solution, since the separate effects of T0 and Γ0 on the 
simulation can only be distinguished in this curve; Fig. 3.5 shows schematically how the 
cohesive parameters affect an R-curve. Beyond this, an objective target function for the 
minimisation of the error should be used.  
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Fig. 3.5: Effect of the cohesive parameters on the R-curve. 

The criterion for the quality of a numerical solution is defined by the user, and different 
definitions will obviously result in different rankings; therefore it is recommended to apply an 
objective criterion as described in the following paragraph.  

b) Numerical optimisation by error minimisation. Two types of methods have gained 
general recognition: Gradient methods and evolutionary algorithms. Since the design space is 
continuous and smooth in a confined range, the chance of getting the global minimum from 
reasonable starting values make gradient methods the preferred method for the identification 
of the cohesive parameters.  

The objective criterion for minimisation is defined by a target function, which should be 
the error norm between the experimental and the numerically determined R-curves. Since 
experimental curves usually consist of a large number of points, the curve can be strongly 
reduced, e.g. to 5 to 10 points at equidistant crack extension values up to the maximum value 
of interest. 

c) Neural network. The procedure for the application of neural networks is partitioned 
into two parts: First the network is trained using the results of various numerical simulations 
(e.g. a number of points on the J R-curve) within the range of possible cohesive parameter 
values, and then the experimental J R-curve is fed into the neural network in a second step to 
obtain values for the cohesive parameters; for details see Appendix 1.  

In contrast to the numerical optimisation procedures mentioned in b), there is no need to 
define an error measure. The NN is trained based on the numerically determined R-curve data 
points and the corresponding cohesive parameters, T0 and Γ0. After the training, the 
experimental R-curve is put into the final network and identifies the parameter set, which is 
based on the training belonging to this curve. 
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4 APPLICATIONS 

Apart from the application to pre-cracked bulk materials under static loading, the cohesive 
model can be applied to almost every problem of the integrity of materials and structural 
components. The model is gaining increasing interest for application, it is in particular ideally 
suited for large amounts of crack extension and the behaviour of interfaces, such as phase 
boundaries, coatings, bonded joints, delamination in layered materials, and fibres in matrices 
as well as the prediction of fracture paths. Crack extension in bulk materials will be shown in 
some detail whereas other areas of application outside the experience gained at GKSS will be 
briefly touched upon. They demonstrate the enormous range of problems which can be treated 
using the cohesive model  

NOTE: It is crucial that the TSL shape used for parameter identification is the same as that 
used application to components, since a different shape would lead to different 
parameters. 

4.1 Damage Free Material 

It is worth noting that cohesive models are able to handle damage anywhere in a material, 
the pre-existence of a crack for modelling damage is not needed. This is of particular interest 
for concrete and rocks – i.e. very brittle materials – which frequently do not contain initial 
macroscopic cracks. Modelling of forming processes using the cohesive model is another area 
of interest; in this case, deformation limits without introducing damage into the component 
can be predicted. However, it must be kept in mind that the stress state in an uncracked 
structure is in general very different from the state ahead of the crack tip, i.e. the triaxiality is 
much lower. Thus the cohesive parameters cannot be determined by direct procedures 
outlined in Clause 3.4.1, but must be identified numerically from fitting to experiments, 
which show a similar stress state as the one investigated. Sufficient experience on this issue is 
not yet available. A recent work on this topic will be published soon by Banerjee et al. [34].  

4.2 Treatment of Thin-Walled Structures   

Mode I fracture with a fracture surface normal to the global loading direction, frequently 
called flat fracture, is usually modelled by 2D plane strain or 3D models. 

In thin-walled structures made of ductile metals, upon loading the front of a crack with its 
plane perpendicular to the global loading direction, starts turning into a plane inclined to 45° 
to the loading direction, which is usually called slant fracture, Fig. 4.1. As already mentioned 
in Clause 3.4.1, the cohesive strength can be identified by direct procedures, but no generally 
applicable procedure is available for the cohesive energy. 
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Fig. 4.1: Transition from normal to slant fracture in thin walls; from [35]. 

Since the crack starts perpendicular to the global loading direction, the correct way would 
be to divide the ligament containing cohesive elements into one region, where the cohesive 
parameters are determined for flat fracture, and a second one with the cohesive parameters for 
slant fracture. However, since the first region is rather short, and its length can be 
approximated by the thickness of the sheet, the first region might therefore be neglected for 
larger structures. This simplification has been used in almost all publications, see e.g. [36], 
where rather small specimens, namely C(T) specimens with W = 50 mm were evaluated. 
However, if even smaller specimens are to be simulated, the contribution of the first region to 
the behaviour of the specimen might not be neglected any more, as has been investigated by 
simulations of Kahn specimens recently [37]. There the ligament was divided into one region, 
where the cohesive parameters are determined for flat fracture, and a second one with the 
cohesive parameters for slant fracture. The values of the cohesive parameters for these two 
regions are generally different, and not much experience has been gained about a specific 
relation between the parameters in the two regions. As a rule of thumb it can be stated that 
both the cohesive strength and the cohesive energy for the slanted part are lower than the ones 
for flat fracture, see e.g. [21][38][39]. In [21] the crack extension of thin-walled fracture 
specimens failing in a slanted manner was controlled by adjusting the cohesive energy in each 
element by experimental vLL-Δa curves. By reproducing the experimental data it turned out 
that the crack initiates with a Γ0 value, which is equal to the crack initiation J for normal 
fracture, and then reduces to significantly lower values during the transition to the slanted 
fracture mode. After reaching the fully slanted region, the values remain almost constant 
again, see Fig. 4.2. 

Commercial finite element codes in general do not allow defining a variable cohesive 
energy controlled by a given crack resistance curve. However, in order to perform reliable 
crack extension simulations, the following methods can be applied for modelling thin-walled 
structures: 

- If a thin-walled structure is modelled by shell elements, which is the most common 
technique, the cohesive model can only show normal separation, since any inclination 
in thickness direction does not exist in the finite element model. Since any three-
dimensional stress state ahead of the crack tip is not well represented, the cohesive 
parameters should be called effective cohesive parameters. 

- If 3D models are used, one can mesh the actual inclined fracture surface, but this is 
rather difficult, since a transition region, where the crack deviates from its original 
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direction is necessary in this case. In addition, complex mixed mode conditions are 
involved: The slanted fracture surface contains mode I/III conditions, and the 
transition zone has a very complex mode I/II/III mix.  

- Alternatively, the slant fracture can be modelled by projecting its actual surface onto a 
plane perpendicular to the wall, thus mimicking flat fracture. Of course, from a 
mechanics point of view, due to this approximation of the real process, the stresses 
acting on the cohesive elements are no longer the real ones. This way a flat fracture is 
modelled for mode I conditions. The cohesive parameters determined by such 
procedure should be called effective cohesive parameters. 

The first option is the one, which is recommended for general use. For this option the 
proposed method for identifying the cohesive strength, see Clause 3.4.1, is applicable. The 
cohesive energy should be fitted to experimental results using one of the methods described in 
Clause 3.4.2. More details about additional issues on thin-walled structures are given in [40]. 
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Fig. 4.2: Development of the cohesive energy in the transition region from flat to slant fracture, 

identified by controlling the crack extension in the simulation with an experimental vLL – Δa 
curve, from [21]. 

NOTE: The user should keep in mind that even though cohesive elements are applicable to 
2D structures by most of the commercial codes, sometimes they do not take the 
thickness reduction of plane stress elements into account and thus cannot be used 
for crack extension analyses in this kind of models 

4.3 Simulation of Crack Extension (R-Curves) 

The simulation of crack extension is one of the most frequent applications of the cohesive 
model. Simulation of the R-curve using the cohesive model allows the determination of 
instability conditions of a structural component and of the correlation between applied loads 
and a suitably selected deformation. 

During the migration of the crack through the material, the conditions of decohesion within 
the process zone local to the crack tip remain constant and are represented by the cohesive 
parameters. This is in-line with the observation of the crack tip opening angle (CTOA). 
Measuring this angle shows a constant value during crack extension, apart from an initial 
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transitional behaviour right after initiation of crack extension. Both, the transition region as 
well as the steady state regime can be reproduced with the cohesive model using constant 
parameters [36]. In contrast to this physically plausible fact, the resistance as measured using 
standard test procedures increases with the amount of crack extension. The reason is that the 
actual standard test methods use global parameters such as the tress intensity factor, the J-
integral, or the crack opening displacement at the position of the pre-crack tip to measure the 
resistance to crack extension, which are highly dominated by plastic deformation which in 
turn has nothing to do with the actual decohesion process, whereas the cohesive energy 
represents the energy consumption and hence the material’s resistance to crack extension in 
the process zone local to the crack tip, which is constant during the motion of the crack 
through the material. The fact that in contrast to the traditional R-curve parameters, the 
cohesive parameters can be assumed to be constant during crack extension makes them highly 
attractive for simulating crack extension in a structural component.  

NOTE: Although slight changes in the stress field during crack extension are observed 
which may have an effect on the cohesive parameters, constancy of these 
parameters can be assumed for practical purposes 

An actual simulation of crack extension in a structural component follows the procedures 
outlined in Chapter 3, for details see Appendix 2.  

4.4 Interfaces 

Interfaces are the natural playground for the cohesive model since the model is by 
definition based on properties of an interface. In practice, a number of material configurations 
can be reduced to material phases separated by an interface, such as 

- Joints (weldments, adhesive bonds etc.) 

- Coatings 

- Reinforcements within a material (fibres, particles, etc.) 

- Laminates 

- Adjacent phases of metallic materials   

to name a few. In reality, the interface is not a mathematical fiction, but a layer with a 
finite, albeit very small, thickness the properties of which are represented by the cohesive 
model.  

When treating cracks in interfaces it may be expected that the crack runs along the 
interface to final failure. This, however, is not always the case. Other failure mechanisms 
usually compete, so the crack may deviate into one of the phases adjacent to the interface. 
This issue is considered in Clause 4.5.  

4.4.1 Welded Joints  

A welded joint represents a complex detail of a structural component in that the material 
properties may vary substantially across the weld, details depending on the materials welded 
together and the welding process. Metals can be joined by a wide selection of welding 
procedures. Two metallic pieces welded together using a fusion welding procedure is 
probably the most commonly used welded joint. This kind of joint consist of two base plates 
made of the same material (or two different base metals if two different materials are joined); 
the weld metal, formed by the molten and then solidified consumable, and the heat affected 
zone in each of the two base plates. The thermal cycles of the welding process creates a 
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complex microstructure with widely varying mechanical properties; for example, the heat 
affected zone (HAZ), representing that volume of the base plate which is adjacent to the weld 
metal undergoes a suite of thermal cycles, ending up with a range of microstructures and 
hence mechanical properties, so that even the term “heat affected zone” is frequently used in 
plural. This situation makes any attempt to model a weld a difficult task, thus requiring 
simplifications to make the problem tractable, see e.g. [42][43][44]. 

Fig. 4.3 depicts a variety of typical welded joints, and in the context of interfaces the 
question arises as to where in these welds interfaces can be identified. Fusion welds exhibit a 
fusion line (in fact it is a fusion surface, in micrographs only the trace of the fusion surface is 
visible) which separates the weld metal from the heat affected zone.  
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Fig. 4.3: Modelling of welded joints: Approximation of the material regions (BM = base metal, HAZ = 

heat affected zone); a) Typical fusion weld with crack in weld metal;  b) Narrow gap weld 
with crack in weld metal;  c) Same weld as in Fig. 4.3.a with crack in HAZ; d) Two base 
metals joined by friction weld. 

Because of its importance, in Fig. 4.32a the above mentioned kind of weld is depicted, 
with a crack within the weld metal, although the crack is not immediately related to the 
interface. However, the interface has an indirect effect on the behaviour of the crack since the 
yield strength mis-match between the weld zones usually present in a weld affects the stress 
and strain fields around the crack [45]. If the weld is sufficiently narrow like in a narrow gap 
weld,  Fig. 4.3b, then the proximity of the crack to the fusion zone and the yield strength mis-
match may give rise to an interaction between crack driving force and crack resistance which 
attracts the crack from the weld metal to either the heat affected zone or the base metal. This 
has to be accounted for when the cohesive elements are placed along the expected crack 
path(s). A similar situation is given in Fig. 4.3c where the crack lies in the heat affected zone, 
it has the choice to deviate to either side, see Fig. 4.7 which shows a crack deviating from the 
fusion line into the yield strength undermatched weld metal. Fig. 4.3d shows an even more 
complex arrangement given by a friction welded joint of two different base materials where 
the crack has in principle five different paths: along the fusion line, into the heat affected 
zones of either base material, or into either base metal. In practice, however, experimental 
experience with actual joints may limit the number of choices. 
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4.4.2 Coatings 

Structural materials are increasingly given coatings, to provide either protection against 
environmental attack and increased wear properties, or adding functions such as optical 
properties and health monitoring. 

Coatings may consist of a single layer, or of several individual layers, making the 
computational model complicated. Multilayer coatings may, therefore, be simplified such that 
single coatings result, see e.g. [51]. These authors did a parameter study on the behaviour of 
thermal barrier coatings and developed criteria for crack extension along the interface or 
coating fracture. 

4.4.3 Delamination 

Structural components in service are always subject to damage. Therefore, non destructive 
inspections have to be carried out on critical components, i.e. those components whose failure 
may lead to severe damage to the complete system. For components made of metallic 
materials, highly sophisticated techniques have been developed and in combination with 
predictive tools, inspection intervals can be set up and successfully used for safe operation.  
However, when applying fibre reinforced composites to structural components, then the 
situation is much less advanced. In these materials, delamination is the main damage 
mechanism which is difficult to detect, and models for routine simulation are still lacking. An 
example for addressing this problem is provided by [53] who developed a finite element 
strategy with relatively large elements in order to treat large structures with a limited number 
of elements. 

4.5 Prediction of Crack Path 

The main drawback of the cohesive model and its implementation using interface elements 
is that the crack path must be prescribed by the user. However, several research groups have 
tried to predict the crack path using cohesive modelling as well, e.g. [54]. If a few alternatives 
exist for a crack to extend, then it is easy to define these possible crack paths as cohesive 
zones. This is usually the case in the neighbourhood of mechanical interfaces, which the crack 
may either cross or run along. The major two types of interfaces are geometrical interfaces, 
e.g. a stiffener attached to a panel, and material interfaces, across which the properties 
change. An important example for such cases is given by welded joints, see Clause 4.4.1. If a 
crack approaches the interface, crack path deviation is likely to occur.  

An example for crack deflection at a geometrical discontinuity, namely a cylindrical shell 
with a circumferential stiffener and a longitudinal crack approaching the stiffener, taken from 
[55], is shown in Fig. 4.4. 
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Fig. 4.4: Crack path prediction (either through or along the stiffener), from [55]. 

A crack approaching an interface can either penetrate it or run along that interface. This 
configuration was investigated by Parmigiani and Thouless [29] concerning elastic mismatch, 
see Fig. 4.5. On the microscale, the interface problem was investigated e.g. by Scheider and 
Brocks [56], when a crack propagates through the metal of a metal matrix composite and 
approaches the (elastic) fibre. In this case, the fibre may debond or break, which is a 
bifurcation problem as well, see Fig. 4.6.  

 
Fig. 4.5: Material interface concerning elastic mismatch, from [29]. 
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Fig. 4.6: Material interface on the microscale: Fibre reinforced composite containing a crack, which 

approaches the fibre and may either break (a) or debond (b) it. 

The effect of crack deflection to an arbitrary angle and thus the prediction of a completely 
unknown crack path has also been investigated by several researchers for mismatched solids. 
Among others, Negre et al. [57], Siegmund and Needleman [58] and Arata et al. [59] have 
performed simulations using finite element meshes that consist of a pattern of four triangles 
forming a quadrilateral with cohesive elements between all element edges, which has already 
been shown in Fig. 2.7. Since the number of elements and nodes increases significantly by 
this meshing technique, the region of elements should be chosen as small as possible. For 
example, in Nègre et al. [57] a crack propagating along an interface between a base material 
and a softer weld seam is modelled. In this case it is assumed that the crack deviates into the 
weld metal and thus only that region has been modelled by the triangular pattern, see Fig. 4.7.  

4.6 Time dependent effects 

The mechanical behaviour of materials may depend on the time explicitly (creep effects) or 
on the rate of the applied deformation, δ . In addition, environmental effects like corrosion, 
diffusion, etc., depend on time by nature. All of these problems have been investigated by 
various researchers. In general the procedure is the same: The TSL in these cases does not 
only depend on the separation itself, but on other quantities as well: ( ), , , ( )...iT f t δ δ ς= x , 
where ζi are field quantities depending on the position, x. This could be the hydrogen 
concentration in the case of stress corrosion cracking, among others. An easy and versatile 
method of including this dependency is to make the cohesive parameters, T0 or Γ0, dependent 
on these quantities.  
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Fig. 4.7: Modelling of crack path deviation at a material interface (welded joint) allowing the crack to 

propagate away from the bond line; from [57]. 

4.6.1 Rate dependent formulations 

The types of rate dependent formulations are often distinguished: 

- explicit rate dependency 

- viscoplastic behaviour 

- viscoelastic behaviour 

The explicit rate dependency is the simplest approach, in which the TSL is usually written 
with two terms, one of which depends on the separation itself, and the other on the separation 
rate: 

( ) ( )

( ) ( )

1 2

1 2

or

T f f

T g g

δ δ

δ δ

= +

=

 (4.1) 

A cohesive law containing a very simple form of this type, namely 

0 0T T forηδ δ δ= + <  (4.2) 

has been proposed by [60]. 

Viscoelastic or viscoplastic laws are more complicated since viscoelastic extensions 
usually contain a time integral of the deformation history, see e.g. [61], whereas the 
separation must be split into an elastic and a viscoplastic part for the viscoplastic 
formulations, [62].  

4.6.2 Dynamic fracture 

Dynamic problems were investigated by several groups. Even though it is a rate-dependent 
formulation, see above, it is treated in a separate clause due to its importance for metallic 
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materials (e.g. crash tests, etc.) and its easy implementation. Besides defining a dependence 
on the separation rate, the cohesive strength and energy may also depend on the strain rate, 
which is available in the adjacent continuum element. This approach was applied in [63], 
where the cohesive properties were identified at high speed tests as 
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with additional parameters C1, C2, 0ε , and m.  

NOTE: If commercial codes are used, the user must be aware that dependencies on 
additional field quantities are usually not possible, at least not for quantities, 
which are not existent in the cohesive element itself but only in the adjacent 
continuum element (like strains or strain rates). 

4.6.3 Stress corrosion cracking 

The material degradation due to environmental conditions and additional mechanical 
stresses is typical for the hydrogen diffusion in stress corrosion cracking. The driving force is 
the hydrogen concentration, and therefore the cohesive properties depend on this quantity. A 
few references exist from different groups, e.g. [64][65] etc., where the cohesive strength is 
reduced by the concentration, whereas the cohesive energy is not affected. The simplest form 
of cohesive strength reduction is given by 

( )0, 0 1SCC envT T C Cα= −  (4.4) 

i.e. a linear decreasing function with additional parameters α and Cenv. The note given in 
Clause 4.6.2 concerning the dependence on additional field quantities in combination with 
commercial codes holds for the problem of hydrogen dependence as well. 

4.7 Unloading and reversed loading, Fatigue 

If another than a monotonous load path is investigated, two additional characteristics of the 
cohesive behaviour must be taken into account: 

Unloading algorithm: This must be implemented in the traction-separation law, i.e. the 
behaviour on reduction of interface separation or traction acting on the interface.  

Damage accumulation: This characteristic is important for cyclic loading only.  

Unloading algorithm 

This is important for any unloading or reversed loading. Different characteristics have been 
described by various authors. The two main differences can be distinguished by the behaviour 
under total unloading leading back to the stress-free state. Some models then reduce the 
separation to zero, see Fig. 4.8(a), whereas others lead to some remaining separation even in 
the stress-free state, Fig. 4.8(b). The former are more representative for brittle fracture, where 
microcracks close completely if the load vanishes. Research groups using this type of 
unloading behaviour are [26] or [24]. A remaining separation represents ductile fracture, 
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where pores and voids, which may grow under loading, cannot close completely, if the stress 
is released. Such cohesive models are employed e.g. by [66][23]. 
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Fig. 4.8: Unloading algorithms for cohesive elements; a) The separation vanishes if unloaded to the 

stress-free state; b) Unloading algorithm leading to some remaining separation.  

Damage accumulation 

If cyclic loading occurs, a saturation occurs easily, if the load cycles are equal, due to the 
unloading/reloading path, which in general is also equal. If the load does not increase from 
one cycle to the other, the load path of the cohesive element will only follow this 
unloading/reloading path. In the literature, one can find two ways to overcome this unphysical 
behaviour: 

One possibility is to define different paths for unloading and reloading, see Fig. 4.9. This 
has been described e.g. by [67][68][69]. In such models the unloading may follow a linear 
curve, whereas the reloading is based on a quadratic equation. 

damage locus for 
monotonous loading

T(δ)

δ

damage locus for 
monotonous loading

T(δ)

δ  
Fig. 4.9: Cyclic loading of cohesive elements following a separation law with different paths for 

loading (green) and unloading (blue). 

An additional damage variable, which accumulates over load cycles and changes the 
behaviour of the cohesive element, has been introduced e.g. by [66] or [70]. In this case, 
usually the cohesive strength is reduced by the amount of damage.  

In both cases the cohesive element may fail even without reaching the initial cohesive 
strength. However, since the total load cycle history must be followed in the simulation, such 
analyses are very cumbersome, and therefore they are usually only used for low cycle fatigue 
up to some hundred cycles. 
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5 OPEN ISSUES 

As already mentioned in several places, the practical application of the cohesive model is 
still under development. Therefore, there are items that require further research for the 
establishment of firm rules in strict procedural form, or to confirm what has been formulated 
in Chapter 3. In the following sections, several open issues will be discussed in detail, 
however, it can also be shown that in spite of some quite complex relationships underlying the 
methods outlined in Chapter 3, these methods represent pragmatic simplifications which can 
be successfully applied in practice, see the following sections and the worked examples in 
Appendix 2.  

5.1 Determination of the Cohesive Energy by a Direct Procedure 

In the present procedure, the direct determination of the cohesive energy is performed by 
setting it equal to the J-integral at initiation of stable crack extension in order to obtain an 
independent method for Γ0, without the need for numerical curve fitting. However, only under 
extreme small scale yielding conditions can Ji be equal to Γ0. Otherwise, the plastic zone 
becomes so large that the energy consumed at crack initiation becomes much greater than the 
energy needed for decohesion. This is illustrated in Fig. 3.5 where the total accumulated 
energy during crack extension is partitioned into the constant cohesive energy and the energy 
consumed by plastic deformation. It is seen that in the case of high plastic deformation the J-
integral at initiation of crack extension can be augmented beyond Γ0. It can also be seen that 
the amount of plastic energy increases with the magnitude of the cohesive stress. The reason 
for this behaviour is that a high value of T0 requires a high applied load to raise the local 
stresses to the value of T0, resulting in a larger plastic zone. A quantitative analysis based on 
2D plane strain simulations of C(T) specimens made of 22 NiMoCr 3 7 [71] is shown in 
Fig.5.1 where Γ0 normalised by Ji is plotted versus T0 normalised by the material’s yield 
strength, σY. The crack initiation is taken as the point where the first integration point of the 
cohesive elements has failed. This analysis shows clearly that the assumed equality between 
Γ0 and Ji is limited to small scale yielding.  
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Fig. 5.1: Effect of plasticity on Γ0/Ji and δ0/δ5i ratio, respectively, [71]. 
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A further example is given in Fig. 5.2 which shows experimental results of the plastic 
work rate in comparison with Γ0 obtained on a C(T) and M(T) specimen as functions of crack 
extension. It is clearly seen that by far most of the crack extension resistance as measured 
using classical fracture mechanics methods is plastic deformation, the magnitude of which is 
strongly influenced by constraint, see Section 5.3. 
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Fig. 5.2: Ratio of plastic work rate, dUpl/dA and Γ0 for C(T) and M(T) specimens determined from 

numerical simulation of tests [72]. 

However, it should be pointed out that setting Γ0 equal to Ji does not necessarily cause 
substantial errors, simply due to what has been said above, namely, that the total energy 
absorbed in ductile failure is much greater than Ji so that an inaccuracy in Γ0 does not 
substantially affect the result of the simulation of a crack extension resistance curve. Thus, the 
pragmatic view of setting Γ0 equal to Ji is justified. 

It is commonly found that different parameter sets determined from numerical 
optimisations are able to fit experimental results. These parameters may then not have a 
reasonable physical background. It is, therefore recommended in the present Procedure to use 
directly determined parameter values as starting values for the numerical optimisation. At 
least for the cohesive energy this is not feasible when interface cracks have to be treated. Ab 
initio analyses could then serve for physically relevant values. 

5.2 Shape of the TSL 

For the shape of the TSL numerous proposals have been made, as already explored in 
Clause 2.2.1, and it has also been pointed out there that different TSL’s need different 
magnitudes of the cohesive parameters. This means that it is essential to work with one TSL 
for the characterisation of a material, in particular if effects such as triaxiality or mixed mode 
loading on damage simulation are to be studied. 

On a more fundamental basis, the TSL for ductile damage should be derived from the 
micromechanical observation that the failure mechanism is mainly void nucleation, growth 
and coalescence. Therefore, the shape of the TSL for ductile damage can be derived from 
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micro-mechanical modelling of a voided unit cell. Such a cell can be modelled either by an 
axisymmetric model with elastic-plastic material containing a void or by a single element 
with a Gurson type material model. Under loading with a constant triaxiality a so-called 
cohesion-decohesion curve [73] can be generated, which relates the elongation of the cell to 
the mesoscopic (average) stress in the main loading direction, see Fig. 5.3a. Such a curve can 
be directly used as a traction-separation law, or can be fitted to another common shape, which 
might be implemented in a finite element code. This example is elaborated further in Section 
5.3 where the effect of triaxiality is discussed. 
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Fig. 5.3: Stress elongation curve of a voided unit cell serving as traction separation law for the 

cohesive model. 

In a study on a side-grooved C(T) specimen made of a reactor pressure vessel steel, it was 
tried to reproduce the experimentally observed crack advance near the specimen surface and 
near the centre plane. It turned out that the experimentally visible crack front shape can be 
reproduced with constant cohesive parameters, as will be shown in Appendix 2. However, the 
parameters depend on the shape of traction-separation law. The values for three different 
shapes are given in Table 5.1. The crack front shapes identified by simulations with the 
different TSLs are also different, but all TSL’s are able to reproduce the general 
characteristics of the experimental shape, thus the optimal shape of the TSL cannot be derived 
from these results, see Fig. 5.4. Interestingly, the TSL parameter set of Table 5.1, fits the 
global behaviour of a C(T) and an M(T) specimen, Fig. 5.5, i.e. the parameters can be 
transferred from one specimen geometry to another independent of the shape of the TSL.  

Table 5.1: Parameters optimised for three TSL’s to simulate a δ5 R-curve of the RPV steel 20 MnMoNi 
5 5 [75]. The TSL shapes are shown in Fig. 2.5a. 

 T0 [MPa] δ0 [mm] Г0 [kJ/m2] 
Partly constant  1500 0.0765 100 
Polynomial  1800 0.0820 83 
Cubic decreasing  1700 0.0926 80 
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Fig. 5.4:  Crack front development in a C(T) specimen of 20 MnMoNi 5 5 RPV steel with a thickness 

of 10 mm and 20% side grooves: Experimental result and simulations using the TSL‘s from 
Table 2.1 and the cohesive parameters from Table 5.1 [75]. 
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Fig. 5.5:  Simulation of fracture specimens made of 20 MnMoNi 5 5 RPV steel using various traction-

separation laws. a) C(T) specimen; b) M(T) specimen. 

5.3 Effect of Triaxiality 

The stress state is of paramount importance in the fracture behaviour of structural 
components. It is here where we observe limits of the transferability of material properties as 
obtained from tests using classical fracture mechanics, because the standard test methods are 
aimed at determining properties mainly under plane strain conditions, albeit more recent test 
methods are designed for plane stress conditions. Both of these conditions represent extreme 
stress states between which a component may be located. It is here where the numerical 



 

 45

damage models promise remedy, however, at least the model presented here still has limits in 
transferring parameters as obtained from experiments on simple geometries to an actual 
component.  

The shape of the TSL and the magnitudes of the cohesive parameters depend on the stress 
triaxiality present in the part to be analysed. This is demonstrated by the kind of analysis 
outlined in Section 5.2, namely the derivation of a TSL from a unit cell simulation using the 
Gurson – Tvergaard – Needleman model [74]. Fig. 5.6a shows shapes of TSL’s for various 
degrees of triaxiality, whereas in Fig. 5.6b the values of T0 and Γ0 are shown as functions of 
triaxiality. These can be expressed in analytical form as 

0 1
0 1

2

exp
Y

T h hC C
hσ

⎛ ⎞−= − ⎜ ⎟
⎝ ⎠

 (5.1) 

for the cohesive strength, and  
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for the cohesive energy. 
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Fig. 5.6: a) Stress – displacement diagram of a unit cell GTN simulation under various triaxialities; b) 

Resulting cohesive strength and cohesive energy as functions of triaxiality [77]; c) Same as 
b), however, for a ferritic steel [78]. The symbol D0 denotes the diameter of the unit cell used 
for determining the cohesive parameters. 

For thin-walled structures it can be shown that any given TSL with its related cohesive 
parameters fitted to the δ5 R-curve of a C(T) specimen made of the aluminium alloy 5083 
T321, see Fig. 2.4, are able to model the δ5 R-curve of an M(T) specimen which is different 
from that of the C(T) specimen [75]. Both specimen types have the same out-of-plane 
constraint; however, their in-plane-constraint is different; their R-curves are also different, as 
demonstrated in Fig. 5.7. It is to be concluded that the difference in crack resistance is not due 
to different cohesive parameters, it follows from the different behaviour of the development 
of the plastic zones and hence of the plastic energy in both specimen types, see Fig. 5.2.  
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Fig. 5.7: Diagram showing experimental and simulated CTOD R curves of Al5083 T321 metal sheet 

(thickness 3 mm) [75]. The C(T) specimen was used for parameter identification, 
simulations of the M(T) specimens are predictions. 

From the same alloy flat notched tensile specimens were investigated. Their fracture 
behaviour was simulated using two of the TSL’s from Table 2.1 and Fig. 2.4. According to 
Fig. 5.8 the simulations miss the actual behaviour by large margins. In the tensile specimens 
the maximum stress triaxiality in the range 0.35 .. 0.55 is substantially lower than that of the 
cracked specimens, having a triaxiality of approx. 0.6 .. 0.65. The low thickness of both 
specimen types may be misleading: Three-dimensional finite element analyses of cracked 
specimens [76] show that even in 1 mm thin specimens the stress state in the centre plane is 
plane strain, thus giving rise to a high T0 value which can not be achieved in the notched flat 
tensile specimen. However, if the cohesive parameters are determined from fracture 
mechanics specimens, which are of thickness that is used for the structure to be predicted, the 
results can be transferred, since the out-of-plane constraint is similar between specimen and 
structure. 
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Fig. 5.8:  Notched flat tensile specimens with a notch root radius of R=4 mm, made of Al5083 T321 

metal sheet, comparison of experimental tensile test with simulations using the TSL’s in 
Figs. 2.4e and 2.4.a [75]. 
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In thick-walled structures constraint varies through the wall thickness, and the conditions 
vary with the magnitude of the thickness. Hence, components with different thickness exhibit 
different out-of-plane constraint which, in addition, varies along the thickness direction. 
Variable constraint across the thickness has consequences for the behaviour of the crack front 
in the interior of the wall, which the cohesive model should be able to reflect. This topic was 
already mentioned in Section 5.2 showing a crack front of a side-grooved C(T) specimen 
made of a reactor pressure vessel steel, which was to be reproduced by the cohesive model. It 
turned out that the general characteristics of the experimental shape could be reproduced; cf. 
Fig. 5.4 even with constant values for cohesive strength and energy. Thus it can be concluded 
that the cohesive model is able to consider the different stress states ahead of the crack tip 
with reasonable accuracy. According to Fig. 5.5 this is due to the high constraint, at which 
any constraint differences do not lead to strongly varying cohesive parameters, and thus one 
TSL parameter set models the global as well as the local behaviour of a C(T) specimen. 

In contrast to the study just mentioned, a variation of the cohesive parameters across the 
thickness of a C(T) specimen made of a low strength steel is shown in Fig. 5.9 [79]. In this 
study, the cohesive parameters were obtained by varying T0 and Γ0 such that the simulated 
crack front development matched the experimentally observed behaviour. As expected, the 
cohesive strength is highest in the interior and decreases towards the surface of the specimen. 
The reverse, however, slight trend is observed for the cohesive energy. However, another 
study on Al 6082 O, a rather soft but high hardening aluminium alloy, was performed using 
the same procedure [80], but in this case the crack front shape could not be reproduced with 
reasonable accuracy. 
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Fig. 5.9: Variation of the cohesive parameters across the thickness of a C(T) specimen made of a low 

strength steel [79]. 

The above examples show that the constraint problem is rather complex and needs further 
work. A pragmatic method has to be pursued in that the cohesive parameters have to be 
determined on specimens whose constraint conditions resemble those of the component to be 
analysed. Thus, the dream of having a model that can handle all transferability problems with 
a unique set of parameters has not yet come true. However, for the sake of a pragmatic 
application of the cohesive model, some general recommendations can be derived from the 
present state of knowledge: 
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In thin-walled structures, triaxiality at a crack tip is independent of the loading mode 
(tension versus bending). Cohesive parameters can be determined on C(T) specimens and 
transferred to any configuration with the same thickness. 

Thick-walled structures exhibit a pronounced triaxiality effect as a function of the loading 
mode. Hence, the model parameters should be determined appropriately, i.e. for the thickness 
and loading mode (tension versus bending) under consideration as average values. 

Initially un-cracked structures exhibit low triaxiality, and parameters determined on 
cracked specimens are not suitable, and vice versa. Therefore, in that case the cohesive 
parameters have to be determined on low constraint specimens. 
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APPENDIX 1 PARAMETER IDENTIFICATION USING NEURAL NETWORKS 

A 1.1 Fundamentals of the Artificial Neural Network 

An artificial neural network (ANN) can be used for solving complex inverse problems in 
computational mechanics, see e.g. [A1][A2]. The underlying theory is fairly simple: An input 
vector, xi, is transformed into the output vector, yi, by an interconnected network of neurons 
assorted in layers as shown in Fig. A1.1. In a first step, which is called the feed forward step, 
the processing of the neural network is from left (input) to right (output). Each single neuron 
has multiple inputs, yi, drawn as arrows in the figure, and a single output, yj. The activation vj 
of the neuron is a linear combination of all inputs multiplied with a specific synaptic weight 

ijw  plus a threshold jθ : 

iijjj ywv ∑+= θ
. (A1.1) 

Then the output yj of the neuron is computed from a sigmoidal activation function 

jvjj e
vfy −+

==
1

1)(
 (A1.2) 

which is distributed to all neurons in the following layer. 

 
Figure A1.1: Sketch of a multilayered Artificial Neural Network, [A1]. 

The ANN is trained by multiple sets of pointwise known correlations between the input 
and output vectors of interest in order to determine the synaptic weights and thresholds. The 
internal minimisation strategy behind that identification procedure is called “resilient back-
propagation”, described in [A1]. Using the well-trained neural network, approximate 
solutions can be calculated for given inputs and unknown output vectors.  

A 1.2 Setup of the ANN for parameter identification  

The ANN can be used to develop a relation between the shape of a curve of experimentally 
measurable quantities such as force versus elongation, and the cohesive parameters, T0 and Γ0. 
Therefore, the inputs for the neural network are a small number of sampling points. These 
might be one of a mixture of the following: 

- Several force values Fi at distinct elongations. 

- Values of crack resistance in terms of the J-Integral or CTOD at distinct crack 
extension values. 
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- Remarkable quantities from the experiment, e.g. the maximum force, Fmax, or the J-
integral or CTOD at crack initiation. 

The length of the input vector should be kept small, in general 4 to 6 values should suffice 
as input. 

The two cohesive parameters are assigned to the two output neurons. The total number of 
layers is chosen to be 3, i.e. only one hidden layer has been inserted.  

A 1.3 Application of the ANN  

Training sets are generated from a number of finite element simulations with variation of 
the cohesive properties, providing the respective structural response.  

After training, the Artificial Neural Network is used to determine the cohesive parameters 
from the neural network output for given experimental data at the input. 
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APPENDIX 2 WORKED EXAMPLES FOR SIMULATION OF CRACK 
EXTENSION  

In this section, the simulation of crack extension will be demonstrated for several specimen 
configurations and materials which have been very well documented within the GKSS 
research activities. These materials are a low and a high strength aluminium alloy and a 
pressure vessel steel.  

A 2.1 General Comments 

When simulating crack extension in a structural component, three major steps have to be 
performed: 

- Creation of the finite element mesh of the component; 

- Determination of the basic material properties; 

- Decision on the TSL; 

- Determination of the cohesive parameters. 

It may also be useful to recall that the magnitude of resistance to crack extension depends 
substantially on the cohesive strength, T0, whereas the magnitude of the cohesive energy is 
less effective. The schematic in Fig. 3.5 is substantiated by simulations using the cohesive 
model depicted in Fig. A2.1. These simulations were performed for small scale yielding. The 
two diagrams show that the resistance to crack extension is also affected by the strain 
hardening exponent of the material. 

Since when using direct procedures for determining the cohesive parameters, for the 
determination of Ji a fracture mechanics test including crack extension has to be done anyway 
it is highly recommended to use the test data for validating the cohesive parameters 

A 2.2 Three-dimensional Analysis of Crack Extension in the Low-strength Aluminium 
Alloy Al 2024-FC Using Direct Procedures 

The unusual aluminium alloy 2024-FC has been used at GKSS for numerous investigations 
as a model material. This material was originally the age hardened high-strength aluminium 
alloy 2024 T351, which was solution treated and then slowly cooled in the furnace (this is 
where the acronym FC comes from). The goal of this overaging treatment was to receive a 
material with a very low yield strength of 80.7 MPa and a high strain hardening exponent of 
about N = 0.3.  

A 2.2.1 Description of task 

In this example [A6], structures made of Al 2024-FC were available in the form of a 40% 
side-grooved C(T) specimen and a tensile panel with a surface crack, Fig. A2.2. For both 
specimen types, the force, crack opening displacement, δ5, the CMOD and the detailed 
development of the crack front during loading was determined in experiments and then used 
for validating the cohesive model. In these experiments, the crack front was marked by 
intermediate unloadings. 
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Fig. A2.1: Effect of cohesive strength on the resistance to crack extension as determined by 

cohesive model simulations [A3], a) strain hardening exponent N = 0.1, b) strain 
hardening exponent N = 0.2. 

The stress – strain curve of the alloy as determined on a round tensile bar is shown in 
Fig. A2.3, the basic material properties are listed in Table A 2.1. 

Table A 2.1: Tensile properties of Al 2024 FC.  

Stress–Strain Properties 
Elastic modulus E = 72000 MPa 
Poisson ratio ν = 0.3 
Yield strength (at 0.2% plastic strain) Rp0.2 = 81 MPa 
Tensile strength Rm = 224 MPa 
True failure strength* Rf

* = 300 MPa 
* This value was determined using the cross section measured after the test. 

 



  

 57

Y

ISO V notch
45°, R0.25 mm

5 mm

δ5

X

B

Bn

F

W
a0

vLL
Y

W = 50 mm
B = 5 mm
Bn = 3 mm

a0 = 25.42 mm

C(T)sg40%

δ5
X

CMOD

F, vLL

2W
2c0

S(T)

2W = 100 mm

a0 = 4.66 mm
2c0 = 5.37 mm

a0/t = 0.466
a0/c0 = 0.866

B = 10 mm

a0Z

Z

 
Fig. A2.2: Specimen geometries for 3D cohesive model analysis Al 2024-FC [A4], a) side-grooved 

C(T) specimen, b) surface cracked tensile panel. 
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Fig. A2.3: Stress–strain curve of Al 2024 FC [A4][A8]. 

A 2.2.2 Cohesive Model 

In contrast to the TSL recommended in the present Procedure, this early study employed a 
rectangular TSL where T(δ) = T0 and Г0 = T0 δ0. In this TSL, δ1 is zero, and δ2 is equal to δ0, 
for the meaning of these symbols see Fig. 3.2.  

The side-grooved specimens exhibited normal fracture so that for the cohesive strength the 
method schematically outlined in Fig. 3.3 was applied. The detailed procedure is depicted in 
Fig. A2.4. A sharply notched tensile specimen with a circular cross section was pulled to 
fracture. The stress distribution over the cross section of the specimen was determined by a 
axisymmetric stress analysis (with v. Mises plasticity, however, without cohesive elements); 
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the analysis was based on the true stress-strain curve of the material as determined on a 
smooth tensile specimen as shown in Fig. A2.3. 
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Fig. A2.4. Tensile test and FEM analysis on notched specimen of Al 2024 FC for the determination 

of the cohesive stress [A4][A8]. 

As the diagram shows, at very low applied loads the stress maximum occurs at the notch 
root, which with increasing load is gradually shifted to the centre of the specimen. At the 
incident of fracture, the maximum stress amounts to 420 MPa; this is more than five times the 
value of the yield strength. 

Fig. A2.5 shows the details of the determination of the cohesive energy, Γ0. As depicted 
schematically in Fig. 3.4, the line representing the stretch zone width (in this case 10 μm) 
intersects with the initial section of the R-curve which was determined on five specimens 
using the electrical potential drop method; reproducibility of these measurements is excellent 
and in very good agreement with the two calibration points also shown in the diagram. The 
intersection yields Ji = 10 N/mm, which is set equal to the cohesive energy, Γ0. 

NOTE: According to the standard ISO 12135 [A7], the J – Δa pairs have to meet the 
requirements outlined in Fig. 3.4 which have been developed for the multiple 
specimen method, where each data point is obtained by a test on one specimen. 
However, in the example shown in Fig. A2.5, the single specimen method was used 
in the form of the DC potential drop method, although due to their limited 
accuracy, the standard excludes single specimen methods from the determination 
of  initiation of crack extension. The excellent coincidence of the calibration points 
in Fig. A2.5 with the DC PD data justifies the procedure chosen. 
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Fig. A2.5: Determination of the J-integral at initiation of stable crack extension, Ji, which is the 

cohesive energy of low strength Al 2024 FC [A9]. 

A 2.2.3 Finite element model 

A finite element user code [A5] was employed. Crack extension simulations were 
performed using a three-dimensional FE model, i.e. plane cohesive elements were embedded 
in the symmetry plane at the element faces of hexahedral continuum elements. For the side-
grooved C(T) specimen, 6 layers of elements per half net section thickness were used; the side 
groove was modelled as a sharp notch, with only one extra layer for the side groove. The 
finite element mesh consisted of 1258 20-node quadratic elements with 14 reduced integration 
points and 7081 nodes. The near-tip element size was 0.2 mm. In the ligament plane, two-
dimensional nine-node quadratic elements were placed. In order to ensure compatibility with 
nine-node quadratic interface elements, transition elements with 22 nodes were used.  

The surface cracked SC(T) specimen was treated similarly to the C(T) geometry. However, 
the mesh contained 1645 elements and 9044 nodes with a smallest element size of 0.25 mm. 
For the C(T)sg specimen type, also two-dimensional plane strain analyses were performed in 
order to demonstrate the usefulness of a full 3D analysis. 

A 2.2.4 Analyses and Results 

In all the simulations the cohesive parameters were set equal to the values identified above 
(T0 = 420 MPa, Γ0 = 10 N/mm) and considered independent of the stress state. 

According to Fig. A2.6 the 3D analysis of the C(T) specimen matches the experimental 
CMOD – crack extension behaviour very well, whereas the plane strain results predict CMOD 
values which are substantially higher than the experimental ones. The development of the 
crack front during loading for the same specimen is depicted in Fig. A2.7. Due to the 
presence of the side-grooves, the crack front extends much faster near the specimen surface 
than in the interior. This is particularly well predicted by the 3D simulation. The surface 
cracked tensile panel SC(T) was analysed with the 3D FE model only. As can be seen in 
Fig. A2.8, also in this case the simulations match the experiments very well. 
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Fig. A2.6: Crack mouth opening displacement versus crack extension for the side-grooved C(T) 

specimen. 
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Fig. A2.7: Side-grooved C(T) specimen showing experimental and simulated crack fronts; a) crack 

front shape development from cohesive simulations, b) comparison of the crack front 
from experiment at the end of interrupted test and respective cohesive simulation, c) 
mesh of C(T) specimen with view on the fracture plane. 
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Fig. A2.8: Surface cracked tensile panel, a) applied nominal stress versus the crack mouth opening 

displacement, b) development of the crack extension; c) comparison of simulated and 
experimental crack shape and extension. 

A 2.3 Thin Sheet of the High-strength Aluminium Alloy Al 2024 T351, Using Direct 
Procedures  

A 2.3.1 Description of task 

This typical aerospace material with a thickness of 1.6 mm was tested in the form of two 
50 and 1000 mm wide C(T) specimens, respectively, with a starting crack length of a0/W= 0.5 
[A9]. The tensile properties as determined on a flat tensile specimen are listed in Table A 2.2; 
the stress – strain curve is depicted in Fig. A2.9. 

Table A 2.2: Tensile properties and cohesive parameters of Al 2024 T351. 

Stress–Strain Properties 
Elastic modulus E = 72000 MPa 
Poisson ratio ν = 0.3 
Yield strength (at 0.2% plastic strain) Rp0.2 = 300 MPa 
Tensile strength Rm = 427 MPa 
True failure strength Rf

* = 550 MPa 
 

Cohesive Parameters 
Ji from 3 experiments 8.8 – 10 N/mm 
Cohesive strength, T0 550 MPa 
Cohesive energy, Γ0 9.5 N/mm 
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Fig. A2.9: Stress–strain curve of Al 2024 T 351 [A9]. 

A 2.3.2 Cohesive model 

The same rectangular model as in section A 2.2.2 was utilised. The cohesive strength was 
determined directly from the stress-strain curve in Fig. A2.9. The fracture strength, Rf

*, was 
obtained from the reduced cross section at fracture similar as in Section A 2.2 for 2024FC; 
this yielded Rf

* = T0 = 550 MPa. From fracture mechanics experiments, the J-integral at 
initiation of crack extension, Ji, yielded values between 8.8 and 10 N/mm, Fig. A2.10, from 
which the cohesive energy was set equal to 9.5 N/mm, Table A 2.2. 
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Fig. A2.10: Determination of the J-integral at initiation of stable crack extension, Ji, which is the 

cohesive energy of high-strength Al 2024 T351, [A9]. 
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A 2.3.3 Finite element model 

A finite element user code [A5] was employed. The specimens were analysed using a 
plane stress model consisting of isoparametric 8-node solid elements with the smallest 
elements near the crack tip having a width of 0.05 and height of 0.075 mm.  

A 2.3.4 Results 

The FE and cohesive models, together with the directly determined cohesive parameters 
reproduce the experimental crack extension resistance curve of the small specimens very well, 
Fig. A2.11a. The application to the large specimens results in a slight under-prediction of the 
crack extension resistance for large amounts of Δa, Fig. A2.11b. A possible reason for this 
behaviour may be the occurrence of a small amount of buckling in the larger specimens, 
resulting in somewhat larger measurements of δ5. 
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Fig. A2.11: Experimental and simulated δ5–Δa curves of high-strength Al 2024 T351, a) 50 mm wide 

C(T) specimens, b) 1000 mm wide C(T) specimens . 

A 2.4 Three-dimensional Analysis of Crack Extension in the Pressure Vessel Steel 
20 MnMoNi 55, Using Direct Procedures 

A 2.4.1 Description of task 

For this exercise, two side-grooved C(T) specimens and one side-grooved M(T) specimen, 
Fig. A2.12, were machined from the pressure vessel steel 20 MnMoNi 5 5. Crack front 
development and force – load line displacement curves were determined on the C(T) 
specimens, whereas on the M(T) specimen the J- Δa curve and the force – CMOD curve were 
investigated [A9]. 

A 2.4.2 Cohesive model 

The standard GKSS cohesive model depicted in Fig. 3.2 served for the analysis. For the 
C(T) specimen, a further simulation was run with the rectangular TSL mentioned in clause A 
2.2.2.  
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Fig. A2.12: Specimen geometries of the steel 20 MnMoNi 5 5 for 3D cohesive model analysis, a) 

side-grooved C(T) specimen, b) side-grooved M(T) specimen. 

Also in this case, only normal separation was considered. For the pressure vessel steel 
20MnMoNi55 the cohesive stress was determined by means of a series of round notched 
tensile specimens, Fig. A2.13. The FEM analysis of one of these specimens was performed as 
already shown in Fig. A2.4 and is shown in Fig. A2.14, resulting in T0 equal to 1460 MPa. 
The results of Fig. A2.14 are rearranged and shown again in Fig. A2.15 where the average 
tensile stress, applied force divided by the original net cross section, is compared with the 
stress in the centre of the specimen as determined by the finite element analysis. The 
augmentation of the maximum stress in the specimen centre over the average stress due to the 
notch effect is clearly visible and amounts to about a factor of two at the fracture point. The 
results obtained on three of the four notched specimens are shown in Fig. A2.16; it is 
interesting to note that the values of T0 are almost identical and hence independent of the 
stress triaxiality σm/σeff which varied between 1.053 and 1.489. 
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Fig. A2.13: Round notched tensile specimens for the determination of the cohesive strength of 

20MnMoNi55 steel. 
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Fig. A2.14: Tensile test on 20 MnMoNi 5 5 steel and FEM analysis for the determination of the 

cohesive stress using the direct method; presented for specimen NRB2 [A10]. 
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Fig. A2.15: Tensile test on 20 MnMoNi 5 5 steel and FEM analysis for the determination of the 

cohesive stress using the direct method; development of the axial stresses and use of 
experimental limit at unstable failure point; presented for specimen NRB2 [A10]. 
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Fig. A2.16: Tensile test on 20 MnMoNi 5 5 steel and FEM analysis for the determination of the 

cohesive stress using the direct method; development of the axial stresses and use of 
experimental limit at unstable failure point; presented independently for 3 specimen 
NRB1, NRB2, NRB4 with different notch sizes. 

Using the same procedure applied to the aluminium alloy, Fig. A2.5, the cohesive energy, 
Γ0, was determined with a value of 120 N/mm, Fig. A2.17. Again, excellent reproducibility of 
the experiments carried out on four specimens, with both the electrical potential method and 
the multiple specimen method can be seen from the two diagrams. 
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Fig. A2.17: Experimental determination of the cohesive energy for normal fracture of the steel 20 

MnMoNi 5 5 via the J-integral at initiation of ductile crack extension [A10]. 
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A 2.4.3 Finite element model 

The simulations have been conducted using the finite element code ABAQUS with 
additional user defined cohesive elements. The 3D mesh of the C(T) specimen modelled one 
quarter due to symmetry. The application of the load through the bolt was simplified by a 
single line of nodes where the displacement was applied, see Fig. A2.18. The mesh had 7 
layers of cohesive elements in thickness direction allowing for 9 mm of crack extension. The 
side groove was modelled as a sharp V-notch. In total 6732 continuum elements and 910 
cohesive elements were generated, which yielded 28700 degrees of freedom. The mesh of the 
M(T) specimen was very similar, except the boundary conditions (displacements were applied 
at the top nodes of the mesh and additional boundary conditions to model the threefold 
symmetry) and additional elements to increase the height of the FE model. 

Fatigue crack front

F, vLL

 
Fig. A2.18: Finite element mesh of the side-grooved C(T) specimen with the detailed view on crack 

tip region and side-grooved notch. 

A 2.4.4 Results 

Figs. A2.19 and A2.20a demonstrate the ability of the cohesive model to reproduce with 
high accuracy the force – displacement behaviour of both specimen geometries. It is 
particularly interesting that the complete shape of the curve is well captured with a single set 
of cohesive parameters. This is a strong indication that in the range of pre-cracked structures 
the assumption of constant cohesive parameters is justified. As in the case of the specimen of 
the low strength aluminium alloy shown in Fig. A2.7, the cohesive model analysis was able to 
model the crack front shape of a side-grooved C(T) specimen very well, Fig. A2.21. 
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Fig. A2.19: Experimental and simulated force–load-line displacement behaviour of two identical side-

grooved C(T) specimens of 20MnMoNi55. 
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Fig. A2.20: Experimental and simulated behaviour of a side-grooved M(T) panel of 20 MnMoNi 5 5, 

a) force–CMOD curve, b) J-resistance curve. 
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Fig. A2.21: Crack front development in the side-grooved C(T) specimen of 20MnNi55, comparison of 

experimental and simulated crack front (the end of this test is indicated in Fig. A2.19). 

A 2.5 Simulation of Crack extension in a Stiffened Structure, Using Indirect 
Identification Procedure 

A 2.5.1 Description of task 

In 2006 the American Society of Testing and Materials organised a predictive round robin 
exercise with 3 participants. In this round robin, crack extension in an integrally stiffened 
panel was to be predicted, and the participants were free to use their preferred model. The 
participants were given the drawing of the integrally stiffened panel machined from a 1.5” 
thick 2024-T351 plate, Fig. A2.22, and provided by Alcoa. The background of this activity 
was given by the current discussion on using welded-on stiffeners, hence integrally stiffened, 
components in aerospace structures. 

Further information provided was the stress – strain data and a table for force, COD, Δa 
and Keff  of an M(T) panel with the dimensions W = 406 mm, t = 6.44 mm and a0 = 51.5 mm. 
The tests to be simulated were performed by Alcoa. From the data of the M(T) panel the 
cohesive parameters were determined by numerical fitting, and crack extension in the 
stiffened panel was predicted. The major benefit of the cohesive model in this task is the fact 
that the crack branching along the skin and into the stiffener is a direct result of the 
simulation. No assumptions on how the crack grows at the junction are needed.  
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Fig. A2.22: Integrally stiffened tensile panel made from Al 2024 T351, provided by Alcoa. 

A 2.5.2 Cohesive model 

The standard GKSS cohesive model depicted in Fig. 3.1 served for the analysis. The 
parameters were identified by trial and error based on the F(COD) curve and the COD(Δa) 
curves. Two different finite element models were employed both for the parameter 
identification and the prediction of the stiffened structure: a shell model and a 3D model. It is 
crucial that the element types used for the identification are the same as for the prediction. 
The parameters identified for both types are listed in Table A2.3. One can see that the values 
differ significantly, due to the different approximation of the stress state ahead of the crack 
tip. The results of the simulations of the M(T) specimen with the final parameter set are 
shown in Fig. A2.23. 

 
 T0 

MPa 
Γ0 

N/mm 
δ0 

mm 
Shell simulation 770 11 0.018 
3D simulation 970 20 0.024 

Table A 2.3: Parameters identified for Al 2024-T351 from an M(T) specimen using two different finite 
element meshes. 
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Fig. A2.23: Simulations of the M(T) specimen using the optimised parameter sets for the shell and 

3D model, a) force–COD curve, b) COD–Δa curve [A10]. 

A 2.5.3 Finite element model 

Two types of FE models were employed: 

a) Shell model: 

Only the mid-plane is used for the shell model of the stiffened panel. This leads to a largely 
reduced number of elements and nodes (8782 linear shell elements and 263 cohesive 
elements, 56070 DOFs). One quarter of the structure was used because of symmetry. The 
mesh is shown in Fig. 2.24. 

b) 3D model, 

Due to the thickness of the panel (7.6 mm for the skin and 5 mm for the stiffener), a large 
number of element layers in thickness direction are needed, which leads to 41294 linear 
continuum elements and 4625 cohesive elements in the present case, and thus the computation 
time is much longer, but also the mesh generation is quite complex, see the mesh used for the 
simulation in Fig. A2.25.  
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Fig. A2.24: Finite element mesh of the stiffened panel using shell elements [A10]. 

A 2.5.4 Results 

Fig. A2.26 demonstrates the way the pre-crack propagated through the stiffened panel. 
When approaching the stiffener, the crack branched and severed the stiffener, and kept on 
propagating through the skin. This kind of behaviour can be easily modelled with the 
cohesive model; the only requirement is that cohesive elements have to be placed along the 
expected crack path. More importantly, the predicted global behaviour should follow as 
closely as possible the experimental result. This requirement is very well met as demonstrated 
by Fig. A2.27, showing that the shell element model is very close to the experiment; the 
residual strength is σappl = 151 MPa compared to the actual value of σappl = 148 MPa in the 
test. The 3D simulation was a bit more conservative leading to σappl = 135 MPa. 
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Fig. A2.25: Finite element mesh of the stiffened panel using 3D elements, [A10]. 

 
Fig. A2.26: Crack extension with distribution of normal stress component at load maximum, 1400 

broken cohesive elements [A10]. 
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Fig. A2.27: Comparison of load-COD curves from experiment and the cohesive simulations of shell 

and 3D model [A10]. 
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APPENDIX 3 HINTS FOR THE TREATMENT OF BRITTLE MATERIALS  

For brittle crack extension, a direct identification method of the TSL based on uniaxial 
tensile test was already proposed in 1981 [A11]. However, nowadays it is commonly agreed 
that only the cohesive strength can be taken from maximum force in a tensile test. The 
complete TSL should then be identified by inverse methods using a prescribed shape of the 
TSL, see e.g. [A12][A13]. This shape is in general characterised by a separation that starts at 
maximum cohesive stress followed by a descending section of the function. In the literature, 
this behaviour is usually approximated by one of the following three functions 

- Linearly decreasing, Fig. A3.1a 

- Bilinearly decreasing, Fig. A3.1b 

- Exponentially decreasing, Fig. A3.1c 

The exponential decreasing function can be written as 

( )
( )

0
0

1 exp
1

1 exp
C

T T
C
δ δ⎛ ⎞−

= −⎜ ⎟−⎝ ⎠
 (A3.1) 

with T0, δ0 and C being model parameters. Please note that in the concrete fracture 
community, the cohesive strength, T0, is usually denoted as tensile strength, ft., and the 
material separation is named w with wc being its critical value.  

 
Fig. A3.1: Various shapes of traction-separation laws for modelling failure of brittle materials. 

A further example is shown in Fig. A3.1d where both linearly increasing and decreasing 
sections form the TSL. The understanding of this is that the cohesive layer behaves linearly 
elastic (stiffness E) until damage initiation. Of course the linear elastic behaviour in the 
beginning can be combined with all shapes shown in Fig. A3.1a to A3.1c. In commercial 
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codes, where an initially infinite stiffness is usually not possible, the linear elastic behaviour 
can precede any separation behaviour. 

A common procedure for the identification of the cohesive strength is to use a tensile bar 
that is pulled to fracture. The value of T0 is determined by the fracture stress, which is the 
force divided by the actual area, A, of the specimen at fracture, T0 = F/A. Another procedure is 
the so-called Brazilian disc or split-cylinder test, in which a cylindrical specimen is loaded 
under compression. 

Under ideally brittle conditions, the cohesive energy, Γ0 is equal to the linear elastic strain 
energy release rate, G, which equals twice the material’s surface energy, 2γ. Therefore, if a KIc 
value is available for the material under consideration, G and thus Γ0 can be calculated from 

Γ0 = Gc = (KIc)²/E’. (A3.2) 

If other TSL’s rather than the simple linear softening law are used, then the additional 
shape parameters should be fitted numerically to experiments.  
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